学习机床监督中具体的过程监控

T.W Rauber, M.M Barata, A.S Steiger-Garção
{"title":"学习机床监督中具体的过程监控","authors":"T.W Rauber,&nbsp;M.M Barata,&nbsp;A.S Steiger-Garção","doi":"10.1016/0066-4138(94)90050-7","DOIUrl":null,"url":null,"abstract":"<div><p>This text describes our generic approaches to monitoring and prognostic, emphasizing the application of learning techniques, and focuses on model-free specific supervision entities that can be realized by a learning-from-examples method. All necessary tools for the generation of a supervised learning of a process situation classifier will be outlined. Statistical feature selection and inductive numerical learning constitute the basis for the proposed architecture. A particular supervised nonparametric learning method, developed in-house, the Q<sup>∗</sup> -algorithm will be presented. Practical experiments for the monitoring of a lathe are carried out.</p></div>","PeriodicalId":100097,"journal":{"name":"Annual Review in Automatic Programming","volume":"19 ","pages":"Pages 105-110"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0066-4138(94)90050-7","citationCount":"0","resultStr":"{\"title\":\"Learning of specific process monitors in machine tool supervision\",\"authors\":\"T.W Rauber,&nbsp;M.M Barata,&nbsp;A.S Steiger-Garção\",\"doi\":\"10.1016/0066-4138(94)90050-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This text describes our generic approaches to monitoring and prognostic, emphasizing the application of learning techniques, and focuses on model-free specific supervision entities that can be realized by a learning-from-examples method. All necessary tools for the generation of a supervised learning of a process situation classifier will be outlined. Statistical feature selection and inductive numerical learning constitute the basis for the proposed architecture. A particular supervised nonparametric learning method, developed in-house, the Q<sup>∗</sup> -algorithm will be presented. Practical experiments for the monitoring of a lathe are carried out.</p></div>\",\"PeriodicalId\":100097,\"journal\":{\"name\":\"Annual Review in Automatic Programming\",\"volume\":\"19 \",\"pages\":\"Pages 105-110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0066-4138(94)90050-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review in Automatic Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0066413894900507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review in Automatic Programming","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0066413894900507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了我们监测和预测的一般方法,强调了学习技术的应用,并侧重于无模型的具体监督实体,可以通过从例子中学习的方法来实现。所有必要的工具,以生成一个过程情境分类器的监督学习将被概述。统计特征选择和归纳数值学习构成了该架构的基础。一个特殊的监督非参数学习方法,开发内部,Q * -算法将提出。对车床进行了实际监测实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning of specific process monitors in machine tool supervision

This text describes our generic approaches to monitoring and prognostic, emphasizing the application of learning techniques, and focuses on model-free specific supervision entities that can be realized by a learning-from-examples method. All necessary tools for the generation of a supervised learning of a process situation classifier will be outlined. Statistical feature selection and inductive numerical learning constitute the basis for the proposed architecture. A particular supervised nonparametric learning method, developed in-house, the Q -algorithm will be presented. Practical experiments for the monitoring of a lathe are carried out.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Author index Foreword Keyword index Author index Preface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1