{"title":"东喜马拉雅山麓城市绿地生物量碳和土壤养分状况:对碳管理的启示","authors":"Ricky Pradhan , Biplov Ch. Sarkar , K. Abha Manohar , Gopal Shukla , Mendup Tamang , Vineeta , Jahangeer A. Bhat , Munesh Kumar , Sumit Chakravarty","doi":"10.1016/j.crsust.2022.100168","DOIUrl":null,"url":null,"abstract":"<div><p>Urban green spaces are effective extension of carbon sinks in human dominant landscapes to supplement climate change mitigation. There have been several studies on the environmental effects of urbanization, but few studies on the services offered by urban green areas. The current research took place at four urban green sites in Cooch Behar, West Bengal, India, which is situated in the Eastern Himalayas. The biomass, primary nutrients, and carbon stock, as well as carbon fractions, were recorded in the study. The research used stratified random quadrate sampling with the line transact process. The physico-chemical characteristics of collected composite soils samples at various depths were analyzed. For biomass estimation, the indirect approach was used. Based on overall estimated plant biomass (869.46 Mg ha<sup>−1</sup>), biomass carbon (434.78 Mg ha<sup>−1</sup>), soil carbon (50.82 Mg ha<sup>−1</sup>) and total ecosystem carbon (485.55 Mg ha<sup>−1</sup>), it can be concluded that the town's parks and institutional green areas improved the town's biophysical components while, also helping avoiding emission by permanently stocking carbon in its tree biomass.</p></div>","PeriodicalId":34472,"journal":{"name":"Current Research in Environmental Sustainability","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666049022000469/pdfft?md5=8e046c59b5bbd742750d823b194f1e17&pid=1-s2.0-S2666049022000469-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Biomass carbon and soil nutrient status in urban green sites at foothills of eastern Himalayas: Implication for carbon management\",\"authors\":\"Ricky Pradhan , Biplov Ch. Sarkar , K. Abha Manohar , Gopal Shukla , Mendup Tamang , Vineeta , Jahangeer A. Bhat , Munesh Kumar , Sumit Chakravarty\",\"doi\":\"10.1016/j.crsust.2022.100168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Urban green spaces are effective extension of carbon sinks in human dominant landscapes to supplement climate change mitigation. There have been several studies on the environmental effects of urbanization, but few studies on the services offered by urban green areas. The current research took place at four urban green sites in Cooch Behar, West Bengal, India, which is situated in the Eastern Himalayas. The biomass, primary nutrients, and carbon stock, as well as carbon fractions, were recorded in the study. The research used stratified random quadrate sampling with the line transact process. The physico-chemical characteristics of collected composite soils samples at various depths were analyzed. For biomass estimation, the indirect approach was used. Based on overall estimated plant biomass (869.46 Mg ha<sup>−1</sup>), biomass carbon (434.78 Mg ha<sup>−1</sup>), soil carbon (50.82 Mg ha<sup>−1</sup>) and total ecosystem carbon (485.55 Mg ha<sup>−1</sup>), it can be concluded that the town's parks and institutional green areas improved the town's biophysical components while, also helping avoiding emission by permanently stocking carbon in its tree biomass.</p></div>\",\"PeriodicalId\":34472,\"journal\":{\"name\":\"Current Research in Environmental Sustainability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666049022000469/pdfft?md5=8e046c59b5bbd742750d823b194f1e17&pid=1-s2.0-S2666049022000469-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Environmental Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666049022000469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Environmental Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666049022000469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Biomass carbon and soil nutrient status in urban green sites at foothills of eastern Himalayas: Implication for carbon management
Urban green spaces are effective extension of carbon sinks in human dominant landscapes to supplement climate change mitigation. There have been several studies on the environmental effects of urbanization, but few studies on the services offered by urban green areas. The current research took place at four urban green sites in Cooch Behar, West Bengal, India, which is situated in the Eastern Himalayas. The biomass, primary nutrients, and carbon stock, as well as carbon fractions, were recorded in the study. The research used stratified random quadrate sampling with the line transact process. The physico-chemical characteristics of collected composite soils samples at various depths were analyzed. For biomass estimation, the indirect approach was used. Based on overall estimated plant biomass (869.46 Mg ha−1), biomass carbon (434.78 Mg ha−1), soil carbon (50.82 Mg ha−1) and total ecosystem carbon (485.55 Mg ha−1), it can be concluded that the town's parks and institutional green areas improved the town's biophysical components while, also helping avoiding emission by permanently stocking carbon in its tree biomass.