{"title":"[新型牙科用塑料空气涡轮手机的研制]。","authors":"M Kusano","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The noise generated by the metal air turbine handpiece employed in dental practice is considerable and attended with predominant high frequency components. Therefore, investigation of the noise generation mechanism and development of a silent air turbine handpiece was only a matter of course. In addition, the metal air turbine hardpiece is comparatively heavy and its production cost is high. From this point of view as well, production of a light air turbine handpiece at low cost is also desirable. In order to overcome the objections to the metal air turbine handpiece, appropriate plastics materials were employed wherever possible. In this study, the number of revolutions, noise level, frequency analysis, start pressure and weight of newly produced plastics handpieces and metal handpieces were examined and compared. The following results were obtained: 1. The number of revolutions of single-nozzle type air turbine handpieces encased in plastics housings and fitted with metal turbine rotors was higher than that of all-metal air turbine handpieces. The noise level of the former tended to be lower. 2. The number of revolutions of multi-nozzle type air turbine handpieces encased in plastics housings and fitted with turbine rotors with plastics turbine blades was almost equal to that of similar metal handpieces, with the noise level tending to be lower. 3. In the case of handpieces fitted with turbine rotors with dynamic balance, the number of revolutions was high and the noise level was low. This indicated that dynamic balance was a factor affecting the number of revolutions and noise level. 4. Narrow band sound frequency analysis of single-nozzle type air turbine handpieces showed a sharp peak at the fundamental frequency which was the same as the number of revolutions multiplied by the number of rotor turbine blades. It is thought that the noise from air turbine handpieces was aerodynamic in origin, being generated by the periodical interruption of steady air flow by rotor turbine blades. 5. The start pressure of plastics handpieces was almost equal to that of metal handpieces. 6. The weight of plastics handpieces was 20%-50% of that of metal handpieces. The present results indicate that it is possible to produce a new type of light, silent and aesthetical air turbine handpiece.</p>","PeriodicalId":75367,"journal":{"name":"[Osaka Daigaku shigaku zasshi] The journal of Osaka University Dental Society","volume":"34 1","pages":"174-92"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Development of new type plastics air turbine handpiece for dental use].\",\"authors\":\"M Kusano\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The noise generated by the metal air turbine handpiece employed in dental practice is considerable and attended with predominant high frequency components. Therefore, investigation of the noise generation mechanism and development of a silent air turbine handpiece was only a matter of course. In addition, the metal air turbine hardpiece is comparatively heavy and its production cost is high. From this point of view as well, production of a light air turbine handpiece at low cost is also desirable. In order to overcome the objections to the metal air turbine handpiece, appropriate plastics materials were employed wherever possible. In this study, the number of revolutions, noise level, frequency analysis, start pressure and weight of newly produced plastics handpieces and metal handpieces were examined and compared. The following results were obtained: 1. The number of revolutions of single-nozzle type air turbine handpieces encased in plastics housings and fitted with metal turbine rotors was higher than that of all-metal air turbine handpieces. The noise level of the former tended to be lower. 2. The number of revolutions of multi-nozzle type air turbine handpieces encased in plastics housings and fitted with turbine rotors with plastics turbine blades was almost equal to that of similar metal handpieces, with the noise level tending to be lower. 3. In the case of handpieces fitted with turbine rotors with dynamic balance, the number of revolutions was high and the noise level was low. This indicated that dynamic balance was a factor affecting the number of revolutions and noise level. 4. Narrow band sound frequency analysis of single-nozzle type air turbine handpieces showed a sharp peak at the fundamental frequency which was the same as the number of revolutions multiplied by the number of rotor turbine blades. It is thought that the noise from air turbine handpieces was aerodynamic in origin, being generated by the periodical interruption of steady air flow by rotor turbine blades. 5. The start pressure of plastics handpieces was almost equal to that of metal handpieces. 6. The weight of plastics handpieces was 20%-50% of that of metal handpieces. The present results indicate that it is possible to produce a new type of light, silent and aesthetical air turbine handpiece.</p>\",\"PeriodicalId\":75367,\"journal\":{\"name\":\"[Osaka Daigaku shigaku zasshi] The journal of Osaka University Dental Society\",\"volume\":\"34 1\",\"pages\":\"174-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Osaka Daigaku shigaku zasshi] The journal of Osaka University Dental Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Osaka Daigaku shigaku zasshi] The journal of Osaka University Dental Society","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Development of new type plastics air turbine handpiece for dental use].
The noise generated by the metal air turbine handpiece employed in dental practice is considerable and attended with predominant high frequency components. Therefore, investigation of the noise generation mechanism and development of a silent air turbine handpiece was only a matter of course. In addition, the metal air turbine hardpiece is comparatively heavy and its production cost is high. From this point of view as well, production of a light air turbine handpiece at low cost is also desirable. In order to overcome the objections to the metal air turbine handpiece, appropriate plastics materials were employed wherever possible. In this study, the number of revolutions, noise level, frequency analysis, start pressure and weight of newly produced plastics handpieces and metal handpieces were examined and compared. The following results were obtained: 1. The number of revolutions of single-nozzle type air turbine handpieces encased in plastics housings and fitted with metal turbine rotors was higher than that of all-metal air turbine handpieces. The noise level of the former tended to be lower. 2. The number of revolutions of multi-nozzle type air turbine handpieces encased in plastics housings and fitted with turbine rotors with plastics turbine blades was almost equal to that of similar metal handpieces, with the noise level tending to be lower. 3. In the case of handpieces fitted with turbine rotors with dynamic balance, the number of revolutions was high and the noise level was low. This indicated that dynamic balance was a factor affecting the number of revolutions and noise level. 4. Narrow band sound frequency analysis of single-nozzle type air turbine handpieces showed a sharp peak at the fundamental frequency which was the same as the number of revolutions multiplied by the number of rotor turbine blades. It is thought that the noise from air turbine handpieces was aerodynamic in origin, being generated by the periodical interruption of steady air flow by rotor turbine blades. 5. The start pressure of plastics handpieces was almost equal to that of metal handpieces. 6. The weight of plastics handpieces was 20%-50% of that of metal handpieces. The present results indicate that it is possible to produce a new type of light, silent and aesthetical air turbine handpiece.