Zhu Qiao, Xing Guo, Tao Wang, Jiangmian Wei, Yingying Liu, Yan Ma, Xin Lü
{"title":"细菌素BM173亚最低抑制浓度对单核增生李斯特菌生物膜形成的影响。","authors":"Zhu Qiao, Xing Guo, Tao Wang, Jiangmian Wei, Yingying Liu, Yan Ma, Xin Lü","doi":"10.1007/s12602-023-10192-1","DOIUrl":null,"url":null,"abstract":"<p><p>Listeria monocytogenes is a significant foodborne pathogen that can form biofilms on various food processing surfaces, thereby enhancing resistance to disinfectants and exacerbating harm to human health. Previous studies have indicated that bacteriocin BM173 exhibits antibacterial and antibiofilm activities. In the current study, our aim was to assess the inhibitory mode of action of sub-inhibitory concentrations (SICs, 1/32 × MIC and 1/16 × MIC) of BM173 on the biofilm formation L. monocytogenes. Crystal violet staining assay revealed that SICs of BM173 significantly inhibit L. monocytogenes biofilm formation. Furthermore, the results of swimming motility assay, plate count, ruthenium red staining, and scanning electron microscopy (SEM) revealed that SICs of BM173 could effectively reduce the movement, cell adhesion, and exopolysaccharide (EPS) production of L. monocytogenes, thereby inhibiting biofilm formation. Real-time quantitative PCR analyses further demonstrated that SICs of BM173 down-regulated the expression of biofilm-associated genes, including those encoding adhesion, virulence factors, and quorum sensing. Additionally, SICs of BM173 effectively reduced the biofilm formation of L. monocytogenes on the surfaces of three food-grade materials (glass, stainless steel, and silicone) at 4 and 25 °C. These outcomes suggest that BM173 holds great potential for development as a promising food preservative for application in the food industry.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"2305-2315"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Sub-Minimum Inhibitory Concentrations of Bacteriocin BM173 on Listeria Monocytogenes Biofilm Formation.\",\"authors\":\"Zhu Qiao, Xing Guo, Tao Wang, Jiangmian Wei, Yingying Liu, Yan Ma, Xin Lü\",\"doi\":\"10.1007/s12602-023-10192-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Listeria monocytogenes is a significant foodborne pathogen that can form biofilms on various food processing surfaces, thereby enhancing resistance to disinfectants and exacerbating harm to human health. Previous studies have indicated that bacteriocin BM173 exhibits antibacterial and antibiofilm activities. In the current study, our aim was to assess the inhibitory mode of action of sub-inhibitory concentrations (SICs, 1/32 × MIC and 1/16 × MIC) of BM173 on the biofilm formation L. monocytogenes. Crystal violet staining assay revealed that SICs of BM173 significantly inhibit L. monocytogenes biofilm formation. Furthermore, the results of swimming motility assay, plate count, ruthenium red staining, and scanning electron microscopy (SEM) revealed that SICs of BM173 could effectively reduce the movement, cell adhesion, and exopolysaccharide (EPS) production of L. monocytogenes, thereby inhibiting biofilm formation. Real-time quantitative PCR analyses further demonstrated that SICs of BM173 down-regulated the expression of biofilm-associated genes, including those encoding adhesion, virulence factors, and quorum sensing. Additionally, SICs of BM173 effectively reduced the biofilm formation of L. monocytogenes on the surfaces of three food-grade materials (glass, stainless steel, and silicone) at 4 and 25 °C. These outcomes suggest that BM173 holds great potential for development as a promising food preservative for application in the food industry.</p>\",\"PeriodicalId\":20506,\"journal\":{\"name\":\"Probiotics and Antimicrobial Proteins\",\"volume\":\" \",\"pages\":\"2305-2315\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probiotics and Antimicrobial Proteins\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12602-023-10192-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12602-023-10192-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Effects of Sub-Minimum Inhibitory Concentrations of Bacteriocin BM173 on Listeria Monocytogenes Biofilm Formation.
Listeria monocytogenes is a significant foodborne pathogen that can form biofilms on various food processing surfaces, thereby enhancing resistance to disinfectants and exacerbating harm to human health. Previous studies have indicated that bacteriocin BM173 exhibits antibacterial and antibiofilm activities. In the current study, our aim was to assess the inhibitory mode of action of sub-inhibitory concentrations (SICs, 1/32 × MIC and 1/16 × MIC) of BM173 on the biofilm formation L. monocytogenes. Crystal violet staining assay revealed that SICs of BM173 significantly inhibit L. monocytogenes biofilm formation. Furthermore, the results of swimming motility assay, plate count, ruthenium red staining, and scanning electron microscopy (SEM) revealed that SICs of BM173 could effectively reduce the movement, cell adhesion, and exopolysaccharide (EPS) production of L. monocytogenes, thereby inhibiting biofilm formation. Real-time quantitative PCR analyses further demonstrated that SICs of BM173 down-regulated the expression of biofilm-associated genes, including those encoding adhesion, virulence factors, and quorum sensing. Additionally, SICs of BM173 effectively reduced the biofilm formation of L. monocytogenes on the surfaces of three food-grade materials (glass, stainless steel, and silicone) at 4 and 25 °C. These outcomes suggest that BM173 holds great potential for development as a promising food preservative for application in the food industry.
期刊介绍:
Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.