J. Ugelstad, H. R. Mfutakamba, P. C. Mørk, T. Ellingsen, A. Berge, R. Schmid, L. Holm, A. Jørgedal, F. K. Hansen, K. Nustad
{"title":"单分散聚合物颗粒的制备与应用","authors":"J. Ugelstad, H. R. Mfutakamba, P. C. Mørk, T. Ellingsen, A. Berge, R. Schmid, L. Holm, A. Jørgedal, F. K. Hansen, K. Nustad","doi":"10.1002/polc.5070720125","DOIUrl":null,"url":null,"abstract":"<p>The swelling capacity of aqueous dispersions of particles (or droplets) containing a relatively low molecular weight, highly water-insoluble compound (<i>Y</i>) may be more than a thousand times higher than that of particles consisting of polymer only. The rate, and also the degree of swelling, may furthermore be increased by having the swelling substance, which usually is a low molecular weight, slightly water soluble substance, present in a finely dispersed form. A two-step swelling process has been described. In a first step, relatively small monodisperse polymer particles are swollen with a component Y and then with monomer or monomer mixtures, followed by polymerization. The method allows preparation of highly monodisperse particles of more than 50 μm diameter with a standard deviation of less than 2%. The particles may be prepared as core and shell particles of different density and with various surface layers, or as macroporous particles. The new particles have found application as standards in immunoassays and, most important up to now, in liquid chromatography. An extension of the process allows the production of monodisperse magnetizable particles which have found application in cell separation of cancer cells from normal cells.</p>","PeriodicalId":16867,"journal":{"name":"Journal of Polymer Science: Polymer Symposia","volume":"72 1","pages":"225-240"},"PeriodicalIF":0.0000,"publicationDate":"1985-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/polc.5070720125","citationCount":"0","resultStr":"{\"title\":\"Preparation and application of monodisperse polymer particles\",\"authors\":\"J. Ugelstad, H. R. Mfutakamba, P. C. Mørk, T. Ellingsen, A. Berge, R. Schmid, L. Holm, A. Jørgedal, F. K. Hansen, K. Nustad\",\"doi\":\"10.1002/polc.5070720125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The swelling capacity of aqueous dispersions of particles (or droplets) containing a relatively low molecular weight, highly water-insoluble compound (<i>Y</i>) may be more than a thousand times higher than that of particles consisting of polymer only. The rate, and also the degree of swelling, may furthermore be increased by having the swelling substance, which usually is a low molecular weight, slightly water soluble substance, present in a finely dispersed form. A two-step swelling process has been described. In a first step, relatively small monodisperse polymer particles are swollen with a component Y and then with monomer or monomer mixtures, followed by polymerization. The method allows preparation of highly monodisperse particles of more than 50 μm diameter with a standard deviation of less than 2%. The particles may be prepared as core and shell particles of different density and with various surface layers, or as macroporous particles. The new particles have found application as standards in immunoassays and, most important up to now, in liquid chromatography. An extension of the process allows the production of monodisperse magnetizable particles which have found application in cell separation of cancer cells from normal cells.</p>\",\"PeriodicalId\":16867,\"journal\":{\"name\":\"Journal of Polymer Science: Polymer Symposia\",\"volume\":\"72 1\",\"pages\":\"225-240\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/polc.5070720125\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Science: Polymer Symposia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/polc.5070720125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science: Polymer Symposia","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/polc.5070720125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation and application of monodisperse polymer particles
The swelling capacity of aqueous dispersions of particles (or droplets) containing a relatively low molecular weight, highly water-insoluble compound (Y) may be more than a thousand times higher than that of particles consisting of polymer only. The rate, and also the degree of swelling, may furthermore be increased by having the swelling substance, which usually is a low molecular weight, slightly water soluble substance, present in a finely dispersed form. A two-step swelling process has been described. In a first step, relatively small monodisperse polymer particles are swollen with a component Y and then with monomer or monomer mixtures, followed by polymerization. The method allows preparation of highly monodisperse particles of more than 50 μm diameter with a standard deviation of less than 2%. The particles may be prepared as core and shell particles of different density and with various surface layers, or as macroporous particles. The new particles have found application as standards in immunoassays and, most important up to now, in liquid chromatography. An extension of the process allows the production of monodisperse magnetizable particles which have found application in cell separation of cancer cells from normal cells.