乙醇和parp介导的核糖体相关长链非编码RNA (lncRNA)在锥体神经元中的调控。

IF 3.6 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Non-Coding RNA Pub Date : 2023-11-17 DOI:10.3390/ncrna9060072
Hooriyah S Rizavi, Hannah E Gavin, Harish R Krishnan, David P Gavin, Rajiv P Sharma
{"title":"乙醇和parp介导的核糖体相关长链非编码RNA (lncRNA)在锥体神经元中的调控。","authors":"Hooriyah S Rizavi, Hannah E Gavin, Harish R Krishnan, David P Gavin, Rajiv P Sharma","doi":"10.3390/ncrna9060072","DOIUrl":null,"url":null,"abstract":"<p><p>Although, by definition, long noncoding RNAs (lncRNAs) are not translated, they are sometimes associated with ribosomes. In fact, some estimates suggest the existence of more than 50 K lncRNA molecules that could encode for small peptides. We examined the effects of an ethanol and Poly-ADP Ribose Polymerase (PARP) inhibitor (ABT-888) on ribosome-bound lncRNAs. Mice were administered via intraperitoneal injection (i.p.) either normal saline (CTL) or ethanol (EtOH) twice a day for four consecutive days. On the fourth day, a sub-group of mice administered with ethanol also received ABT-888 (EtOH+ABT). Ribosome-bound lncRNAs in CaMKIIα-expressing pyramidal neurons were measured using the Translating Ribosome Affinity Purification (TRAP) technique. Our findings show that EtOH altered the attachment of 107 lncRNA transcripts, while EtOH+ABT altered 60 lncRNAs. Among these 60 lncRNAs, 49 were altered by both conditions, while EtOH+ABT uniquely altered the attachment of 11 lncRNA transcripts that EtOH alone did not affect. To validate these results, we selected eight lncRNAs (Mir124-2hg, 5430416N02Rik, Snhg17, Snhg12, Snhg1, Mir9-3hg, Gas5, and 1110038B12Rik) for qRT-PCR analysis. The current study demonstrates that ethanol-induced changes in lncRNA attachment to ribosomes can be mitigated by the addition of the PARP inhibitor ABT-888.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"9 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661276/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ethanol- and PARP-Mediated Regulation of Ribosome-Associated Long Non-Coding RNA (lncRNA) in Pyramidal Neurons.\",\"authors\":\"Hooriyah S Rizavi, Hannah E Gavin, Harish R Krishnan, David P Gavin, Rajiv P Sharma\",\"doi\":\"10.3390/ncrna9060072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although, by definition, long noncoding RNAs (lncRNAs) are not translated, they are sometimes associated with ribosomes. In fact, some estimates suggest the existence of more than 50 K lncRNA molecules that could encode for small peptides. We examined the effects of an ethanol and Poly-ADP Ribose Polymerase (PARP) inhibitor (ABT-888) on ribosome-bound lncRNAs. Mice were administered via intraperitoneal injection (i.p.) either normal saline (CTL) or ethanol (EtOH) twice a day for four consecutive days. On the fourth day, a sub-group of mice administered with ethanol also received ABT-888 (EtOH+ABT). Ribosome-bound lncRNAs in CaMKIIα-expressing pyramidal neurons were measured using the Translating Ribosome Affinity Purification (TRAP) technique. Our findings show that EtOH altered the attachment of 107 lncRNA transcripts, while EtOH+ABT altered 60 lncRNAs. Among these 60 lncRNAs, 49 were altered by both conditions, while EtOH+ABT uniquely altered the attachment of 11 lncRNA transcripts that EtOH alone did not affect. To validate these results, we selected eight lncRNAs (Mir124-2hg, 5430416N02Rik, Snhg17, Snhg12, Snhg1, Mir9-3hg, Gas5, and 1110038B12Rik) for qRT-PCR analysis. The current study demonstrates that ethanol-induced changes in lncRNA attachment to ribosomes can be mitigated by the addition of the PARP inhibitor ABT-888.</p>\",\"PeriodicalId\":19271,\"journal\":{\"name\":\"Non-Coding RNA\",\"volume\":\"9 6\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661276/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-Coding RNA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ncrna9060072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna9060072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

虽然根据定义,长链非编码rna (lncrna)不被翻译,但它们有时与核糖体有关。事实上,一些估计表明存在超过50 K的lncRNA分子可以编码小肽。我们研究了乙醇和聚adp核糖聚合酶(PARP)抑制剂(ABT-888)对核糖体结合lncRNAs的影响。小鼠通过腹腔注射生理盐水(CTL)或乙醇(EtOH),每天两次,连续4天。第四天,给药乙醇的小鼠亚组也接受ABT-888 (EtOH+ABT)。使用翻译核糖体亲和纯化(TRAP)技术检测表达camkii α-锥体神经元中核糖体结合的lncrna。我们的研究结果表明,EtOH改变了107个lncRNA转录本的附着,而EtOH+ABT改变了60个lncRNA。在这60个lncRNA中,49个被两种条件改变,而EtOH+ABT唯一地改变了11个lncRNA转录本的附着,而EtOH单独不影响这些lncRNA转录本。为了验证这些结果,我们选择了8个lncRNAs (Mir124-2hg、5430416N02Rik、Snhg17、Snhg12、Snhg1、Mir9-3hg、Gas5和1110038B12Rik)进行qRT-PCR分析。目前的研究表明,乙醇诱导的lncRNA与核糖体附着的变化可以通过添加PARP抑制剂ABT-888来减轻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ethanol- and PARP-Mediated Regulation of Ribosome-Associated Long Non-Coding RNA (lncRNA) in Pyramidal Neurons.

Although, by definition, long noncoding RNAs (lncRNAs) are not translated, they are sometimes associated with ribosomes. In fact, some estimates suggest the existence of more than 50 K lncRNA molecules that could encode for small peptides. We examined the effects of an ethanol and Poly-ADP Ribose Polymerase (PARP) inhibitor (ABT-888) on ribosome-bound lncRNAs. Mice were administered via intraperitoneal injection (i.p.) either normal saline (CTL) or ethanol (EtOH) twice a day for four consecutive days. On the fourth day, a sub-group of mice administered with ethanol also received ABT-888 (EtOH+ABT). Ribosome-bound lncRNAs in CaMKIIα-expressing pyramidal neurons were measured using the Translating Ribosome Affinity Purification (TRAP) technique. Our findings show that EtOH altered the attachment of 107 lncRNA transcripts, while EtOH+ABT altered 60 lncRNAs. Among these 60 lncRNAs, 49 were altered by both conditions, while EtOH+ABT uniquely altered the attachment of 11 lncRNA transcripts that EtOH alone did not affect. To validate these results, we selected eight lncRNAs (Mir124-2hg, 5430416N02Rik, Snhg17, Snhg12, Snhg1, Mir9-3hg, Gas5, and 1110038B12Rik) for qRT-PCR analysis. The current study demonstrates that ethanol-induced changes in lncRNA attachment to ribosomes can be mitigated by the addition of the PARP inhibitor ABT-888.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Non-Coding RNA
Non-Coding RNA Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍: Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.
期刊最新文献
LNC-ing Genetics in Mitochondrial Disease. Androgen Receptor and Non-Coding RNAs' Interaction in Renal Cell Carcinoma. Comparison of Three Computational Tools for the Prediction of RNA Tertiary Structures. Extracellular Vesicle lncRNAs as Key Biomolecules for Cell-to-Cell Communication and Circulating Cancer Biomarkers. Cardiomyopathies: The Role of Non-Coding RNAs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1