{"title":"结合各向异性滤波、水平集方法和卷积神经网络实现磁共振成像中脑肿瘤的全自动分割","authors":"Mohammad Dweik , Roberto Ferretti","doi":"10.1016/j.neuri.2022.100095","DOIUrl":null,"url":null,"abstract":"<div><p>An accurate, fully automatic detection and segmentation technique for brain tumors in magnetic resonance images (MRI) is introduced. The approach basically combines geometric active contours segmentation with a deep learning-based initialization. As a pre-processing step, an anisotropic filter is used to smooth the image; afterwards, the segmentation process takes place in two phases: the first one is based on the concept of transfer learning, where a pre-trained convolutional neural network coupled with a detector is fine-tuned using a training set of 388 T1-weighted contrast enhanced MRI images that contain a brain tumor (Meningioma); this trained network is able to automatically detect the location of the tumor by generating a bounding box with certain coordinates. The second phase takes place by using the coordinates of the bounding box to initialize the geometric active contour that iteratively evolves towards the tumor's boundaries. While most of the ingredients of this processing chain are more or less well known, the main contribution of this work is in integrating the various techniques in a novel and hopefully clever form, which could take the best of both geometric segmentation algorithms and neural networks, with a relatively light training phase. The performance of such a processing network is evaluated using a separate testing set of 97 MRI images containing the same type of brain tumor. The technique proves to be remarkably effective, with a precision of 97.92%, recall of 96.91%, F-measure of 97.41% and an average Dice similarity coefficient (<em>DSC</em>) for segmented images above 0.95.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"2 3","pages":"Article 100095"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772528622000577/pdfft?md5=70551fc15f8ab639a983b278b98e005c&pid=1-s2.0-S2772528622000577-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrating anisotropic filtering, level set methods and convolutional neural networks for fully automatic segmentation of brain tumors in magnetic resonance imaging\",\"authors\":\"Mohammad Dweik , Roberto Ferretti\",\"doi\":\"10.1016/j.neuri.2022.100095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An accurate, fully automatic detection and segmentation technique for brain tumors in magnetic resonance images (MRI) is introduced. The approach basically combines geometric active contours segmentation with a deep learning-based initialization. As a pre-processing step, an anisotropic filter is used to smooth the image; afterwards, the segmentation process takes place in two phases: the first one is based on the concept of transfer learning, where a pre-trained convolutional neural network coupled with a detector is fine-tuned using a training set of 388 T1-weighted contrast enhanced MRI images that contain a brain tumor (Meningioma); this trained network is able to automatically detect the location of the tumor by generating a bounding box with certain coordinates. The second phase takes place by using the coordinates of the bounding box to initialize the geometric active contour that iteratively evolves towards the tumor's boundaries. While most of the ingredients of this processing chain are more or less well known, the main contribution of this work is in integrating the various techniques in a novel and hopefully clever form, which could take the best of both geometric segmentation algorithms and neural networks, with a relatively light training phase. The performance of such a processing network is evaluated using a separate testing set of 97 MRI images containing the same type of brain tumor. The technique proves to be remarkably effective, with a precision of 97.92%, recall of 96.91%, F-measure of 97.41% and an average Dice similarity coefficient (<em>DSC</em>) for segmented images above 0.95.</p></div>\",\"PeriodicalId\":74295,\"journal\":{\"name\":\"Neuroscience informatics\",\"volume\":\"2 3\",\"pages\":\"Article 100095\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772528622000577/pdfft?md5=70551fc15f8ab639a983b278b98e005c&pid=1-s2.0-S2772528622000577-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772528622000577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528622000577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrating anisotropic filtering, level set methods and convolutional neural networks for fully automatic segmentation of brain tumors in magnetic resonance imaging
An accurate, fully automatic detection and segmentation technique for brain tumors in magnetic resonance images (MRI) is introduced. The approach basically combines geometric active contours segmentation with a deep learning-based initialization. As a pre-processing step, an anisotropic filter is used to smooth the image; afterwards, the segmentation process takes place in two phases: the first one is based on the concept of transfer learning, where a pre-trained convolutional neural network coupled with a detector is fine-tuned using a training set of 388 T1-weighted contrast enhanced MRI images that contain a brain tumor (Meningioma); this trained network is able to automatically detect the location of the tumor by generating a bounding box with certain coordinates. The second phase takes place by using the coordinates of the bounding box to initialize the geometric active contour that iteratively evolves towards the tumor's boundaries. While most of the ingredients of this processing chain are more or less well known, the main contribution of this work is in integrating the various techniques in a novel and hopefully clever form, which could take the best of both geometric segmentation algorithms and neural networks, with a relatively light training phase. The performance of such a processing network is evaluated using a separate testing set of 97 MRI images containing the same type of brain tumor. The technique proves to be remarkably effective, with a precision of 97.92%, recall of 96.91%, F-measure of 97.41% and an average Dice similarity coefficient (DSC) for segmented images above 0.95.
Neuroscience informaticsSurgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology