{"title":"有限维代数的半单代数与pi不变量","authors":"Eli Aljadeff, Yakov Karasik","doi":"10.2140/ant.2024.18.133","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Γ</mi></math> be the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi><mspace width=\"-0.17em\"></mspace></math>-ideal of identities of an affine PI-algebra over an algebraically closed field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math> of characteristic zero. Consider the family <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math> of finite dimensional algebras <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Σ</mi></math> with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> Id</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Σ</mi><mo stretchy=\"false\">)</mo>\n<mo>=</mo>\n<mi>Γ</mi></math>. By Kemer’s theory <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math> is not empty. We show there exists <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi>\n<mo>∈</mo><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math> with Wedderburn–Malcev decomposition <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi><mi>≅</mi><mo> <!--FUNCTION APPLICATION--></mo><msub><mrow><mi>A</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub>\n<mo>⊕</mo> <msub><mrow><mi>J</mi></mrow><mrow><mi>A</mi></mrow></msub></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>J</mi></mrow><mrow><mi>A</mi></mrow></msub></math> is the Jacobson’s radical and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>A</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub></math> is a semisimple supplement with the property that if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>B</mi><mi>≅</mi><mo> <!--FUNCTION APPLICATION--></mo><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub>\n<mo>⊕</mo> <msub><mrow><mi>J</mi></mrow><mrow><mi>B</mi></mrow></msub>\n<mo>∈</mo><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math> then <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>A</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub></math> is a direct summand of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub></math>. In particular <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>A</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub></math> is unique minimal, thus an invariant of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Γ</mi></math>. More generally, let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Γ</mi></math> be the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi><mspace width=\"-0.17em\"></mspace></math>-ideal of identities of a PI algebra and let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>Γ</mi></mrow></msub></math> be the family of finite dimensional superalgebras <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Σ</mi></math> with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> Id</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Σ</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo>\n<mo>=</mo>\n<mi>Γ</mi></math>. Here <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi></math> is the unital infinite dimensional Grassmann algebra and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Σ</mi><mo stretchy=\"false\">)</mo></math> is the Grassmann envelope of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Σ</mi></math>. Again, by Kemer’s theory <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>Γ</mi></mrow></msub></math> is not empty. We prove there exists a superalgebra <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi><mi>≅</mi><mo> <!--FUNCTION APPLICATION--></mo><msub><mrow><mi>A</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub>\n<mo>⊕</mo> <msub><mrow><mi>J</mi></mrow><mrow><mi>A</mi></mrow></msub>\n<mo>∈</mo><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>Γ</mi></mrow></msub></math> such that if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>B</mi>\n<mo>∈</mo><msub><mrow><mi mathvariant=\"bold-script\">ℳ</mi></mrow><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>Γ</mi></mrow></msub></math>, then <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>A</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub></math> is a direct summand of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub></math> as superalgebras. Finally, we fully extend these results to the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>-graded setting where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> is a finite group. In particular we show that if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>B</mi></math> are finite dimensional <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub>\n<mo>:</mo><mo>=</mo> <msub><mrow><mi>ℤ</mi></mrow><mrow><mn>2</mn></mrow></msub>\n<mo>×</mo>\n<mi>G</mi></math>-graded simple algebras then they are <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math>-graded isomorphic if and only if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi><mo stretchy=\"false\">(</mo><mi>B</mi><mo stretchy=\"false\">)</mo></math> are <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>-graded PI-equivalent. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"19 26","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semisimple algebras and PI-invariants of finite dimensional algebras\",\"authors\":\"Eli Aljadeff, Yakov Karasik\",\"doi\":\"10.2140/ant.2024.18.133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Γ</mi></math> be the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>T</mi><mspace width=\\\"-0.17em\\\"></mspace></math>-ideal of identities of an affine PI-algebra over an algebraically closed field <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>F</mi></math> of characteristic zero. Consider the family <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"bold-script\\\">ℳ</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math> of finite dimensional algebras <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Σ</mi></math> with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> Id</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"normal\\\">Σ</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>=</mo>\\n<mi>Γ</mi></math>. By Kemer’s theory <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"bold-script\\\">ℳ</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math> is not empty. We show there exists <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>A</mi>\\n<mo>∈</mo><msub><mrow><mi mathvariant=\\\"bold-script\\\">ℳ</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math> with Wedderburn–Malcev decomposition <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>A</mi><mi>≅</mi><mo> <!--FUNCTION APPLICATION--></mo><msub><mrow><mi>A</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub>\\n<mo>⊕</mo> <msub><mrow><mi>J</mi></mrow><mrow><mi>A</mi></mrow></msub></math>, where <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>J</mi></mrow><mrow><mi>A</mi></mrow></msub></math> is the Jacobson’s radical and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>A</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub></math> is a semisimple supplement with the property that if <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>B</mi><mi>≅</mi><mo> <!--FUNCTION APPLICATION--></mo><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub>\\n<mo>⊕</mo> <msub><mrow><mi>J</mi></mrow><mrow><mi>B</mi></mrow></msub>\\n<mo>∈</mo><msub><mrow><mi mathvariant=\\\"bold-script\\\">ℳ</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math> then <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>A</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub></math> is a direct summand of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub></math>. In particular <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>A</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub></math> is unique minimal, thus an invariant of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Γ</mi></math>. More generally, let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Γ</mi></math> be the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>T</mi><mspace width=\\\"-0.17em\\\"></mspace></math>-ideal of identities of a PI algebra and let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"bold-script\\\">ℳ</mi></mrow><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>Γ</mi></mrow></msub></math> be the family of finite dimensional superalgebras <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Σ</mi></math> with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> Id</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"normal\\\">Σ</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo>\\n<mo>=</mo>\\n<mi>Γ</mi></math>. Here <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>E</mi></math> is the unital infinite dimensional Grassmann algebra and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>E</mi><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"normal\\\">Σ</mi><mo stretchy=\\\"false\\\">)</mo></math> is the Grassmann envelope of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Σ</mi></math>. Again, by Kemer’s theory <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"bold-script\\\">ℳ</mi></mrow><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>Γ</mi></mrow></msub></math> is not empty. We prove there exists a superalgebra <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>A</mi><mi>≅</mi><mo> <!--FUNCTION APPLICATION--></mo><msub><mrow><mi>A</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub>\\n<mo>⊕</mo> <msub><mrow><mi>J</mi></mrow><mrow><mi>A</mi></mrow></msub>\\n<mo>∈</mo><msub><mrow><mi mathvariant=\\\"bold-script\\\">ℳ</mi></mrow><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>Γ</mi></mrow></msub></math> such that if <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>B</mi>\\n<mo>∈</mo><msub><mrow><mi mathvariant=\\\"bold-script\\\">ℳ</mi></mrow><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>Γ</mi></mrow></msub></math>, then <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>A</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub></math> is a direct summand of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub></math> as superalgebras. Finally, we fully extend these results to the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi></math>-graded setting where <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi></math> is a finite group. In particular we show that if <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>A</mi></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>B</mi></math> are finite dimensional <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub>\\n<mo>:</mo><mo>=</mo> <msub><mrow><mi>ℤ</mi></mrow><mrow><mn>2</mn></mrow></msub>\\n<mo>×</mo>\\n<mi>G</mi></math>-graded simple algebras then they are <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math>-graded isomorphic if and only if <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>E</mi><mo stretchy=\\\"false\\\">(</mo><mi>A</mi><mo stretchy=\\\"false\\\">)</mo></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>E</mi><mo stretchy=\\\"false\\\">(</mo><mi>B</mi><mo stretchy=\\\"false\\\">)</mo></math> are <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi></math>-graded PI-equivalent. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"19 26\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2024.18.133\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.133","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Semisimple algebras and PI-invariants of finite dimensional algebras
Let be the -ideal of identities of an affine PI-algebra over an algebraically closed field of characteristic zero. Consider the family of finite dimensional algebras with . By Kemer’s theory is not empty. We show there exists with Wedderburn–Malcev decomposition , where is the Jacobson’s radical and is a semisimple supplement with the property that if then is a direct summand of . In particular is unique minimal, thus an invariant of . More generally, let be the -ideal of identities of a PI algebra and let be the family of finite dimensional superalgebras with . Here is the unital infinite dimensional Grassmann algebra and is the Grassmann envelope of . Again, by Kemer’s theory is not empty. We prove there exists a superalgebra such that if , then is a direct summand of as superalgebras. Finally, we fully extend these results to the -graded setting where is a finite group. In particular we show that if and are finite dimensional -graded simple algebras then they are -graded isomorphic if and only if and are -graded PI-equivalent.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.