非均匀取样,以提高紧凑核磁共振表征新的精神活性物质的性能。

IF 1.9 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Magnetic Resonance in Chemistry Pub Date : 2023-11-23 DOI:10.1002/mrc.5416
Thomas Castaing-Cordier, Sélina Crasnier, Damien Dubois, Virginie Ladroue, Audrey Buleté, Cédric Prudhomme, Céline Charvoz, Fabrice Besacier, Denis Jacquemin, Patrick Giraudeau, Jonathan Farjon
{"title":"非均匀取样,以提高紧凑核磁共振表征新的精神活性物质的性能。","authors":"Thomas Castaing-Cordier,&nbsp;Sélina Crasnier,&nbsp;Damien Dubois,&nbsp;Virginie Ladroue,&nbsp;Audrey Buleté,&nbsp;Cédric Prudhomme,&nbsp;Céline Charvoz,&nbsp;Fabrice Besacier,&nbsp;Denis Jacquemin,&nbsp;Patrick Giraudeau,&nbsp;Jonathan Farjon","doi":"10.1002/mrc.5416","DOIUrl":null,"url":null,"abstract":"<p>Efficient and robust analytical methods are needed to improve the identification and subsequent regulation of new psychoactive substances (NPS). NMR spectroscopy is a unique method able to determine the structure of small molecules such as NPS even in mixtures. However, high-field NMR analysis is associated with expensive purchase and maintenance costs. For more than a decade, compact NMR spectrometers have changed this paradigm. It was recently shown that a dedicated analytical workflow combining compact NMR and databases could identify the molecular structure of NPS, in spite of the lower spectral dispersion and sensitivity of compact spectrometers. This approach relies on <sup>1</sup>H-<sup>13</sup>C HSQC to both recognize NPS and elucidate the structure of unknown substances. Still, its performance is limited by the need to compromise between resolution and experiment time. Here, we show that this strategy can be significantly improved by implementing non-uniform sampling (NUS) to improve spectral resolution in the <sup>13</sup>C dimension of HSQC at no cost in terms of experiment time. Gains in the range of 3 to 4 in resolution are achieved for pure NPS and for a mixture. Finally, 2D HSQC with NUS was applied to improve the identification of NPS with the assistance of databases. The resulting method appears as a useful tool for the characterization of NPS in mixtures, which is essential for forensic laboratories.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 5","pages":"378-385"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5416","citationCount":"0","resultStr":"{\"title\":\"Non-uniform sampling to enhance the performance of compact NMR for characterizing new psychoactive substances\",\"authors\":\"Thomas Castaing-Cordier,&nbsp;Sélina Crasnier,&nbsp;Damien Dubois,&nbsp;Virginie Ladroue,&nbsp;Audrey Buleté,&nbsp;Cédric Prudhomme,&nbsp;Céline Charvoz,&nbsp;Fabrice Besacier,&nbsp;Denis Jacquemin,&nbsp;Patrick Giraudeau,&nbsp;Jonathan Farjon\",\"doi\":\"10.1002/mrc.5416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Efficient and robust analytical methods are needed to improve the identification and subsequent regulation of new psychoactive substances (NPS). NMR spectroscopy is a unique method able to determine the structure of small molecules such as NPS even in mixtures. However, high-field NMR analysis is associated with expensive purchase and maintenance costs. For more than a decade, compact NMR spectrometers have changed this paradigm. It was recently shown that a dedicated analytical workflow combining compact NMR and databases could identify the molecular structure of NPS, in spite of the lower spectral dispersion and sensitivity of compact spectrometers. This approach relies on <sup>1</sup>H-<sup>13</sup>C HSQC to both recognize NPS and elucidate the structure of unknown substances. Still, its performance is limited by the need to compromise between resolution and experiment time. Here, we show that this strategy can be significantly improved by implementing non-uniform sampling (NUS) to improve spectral resolution in the <sup>13</sup>C dimension of HSQC at no cost in terms of experiment time. Gains in the range of 3 to 4 in resolution are achieved for pure NPS and for a mixture. Finally, 2D HSQC with NUS was applied to improve the identification of NPS with the assistance of databases. The resulting method appears as a useful tool for the characterization of NPS in mixtures, which is essential for forensic laboratories.</p>\",\"PeriodicalId\":18142,\"journal\":{\"name\":\"Magnetic Resonance in Chemistry\",\"volume\":\"62 5\",\"pages\":\"378-385\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5416\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mrc.5416\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrc.5416","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

需要有效和稳健的分析方法来改进新精神活性物质(NPS)的识别和后续监管。核磁共振波谱是一种独特的方法,能够确定小分子的结构,如NPS,甚至在混合物中。然而,高场核磁共振分析与昂贵的购买和维护成本相关。十多年来,紧凑型核磁共振光谱仪改变了这种模式。最近的研究表明,结合紧凑核磁共振和数据库的专用分析工作流程可以识别NPS的分子结构,尽管紧凑光谱仪的光谱色散和灵敏度较低。该方法依靠1 H-13 C HSQC来识别NPS和阐明未知物质的结构。然而,由于需要在分辨率和实验时间之间折衷,它的性能受到限制。在这里,我们表明,通过实施非均匀采样(NUS)可以显著改进该策略,以提高HSQC在13 C维度的光谱分辨率,而不需要花费实验时间。对于纯NPS和混合物,分辨率增益在3到4之间。最后,利用基于NUS的二维HSQC技术,在数据库的辅助下提高对NPS的识别。由此产生的方法似乎是表征混合物中NPS的有用工具,这对法医实验室至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-uniform sampling to enhance the performance of compact NMR for characterizing new psychoactive substances

Efficient and robust analytical methods are needed to improve the identification and subsequent regulation of new psychoactive substances (NPS). NMR spectroscopy is a unique method able to determine the structure of small molecules such as NPS even in mixtures. However, high-field NMR analysis is associated with expensive purchase and maintenance costs. For more than a decade, compact NMR spectrometers have changed this paradigm. It was recently shown that a dedicated analytical workflow combining compact NMR and databases could identify the molecular structure of NPS, in spite of the lower spectral dispersion and sensitivity of compact spectrometers. This approach relies on 1H-13C HSQC to both recognize NPS and elucidate the structure of unknown substances. Still, its performance is limited by the need to compromise between resolution and experiment time. Here, we show that this strategy can be significantly improved by implementing non-uniform sampling (NUS) to improve spectral resolution in the 13C dimension of HSQC at no cost in terms of experiment time. Gains in the range of 3 to 4 in resolution are achieved for pure NPS and for a mixture. Finally, 2D HSQC with NUS was applied to improve the identification of NPS with the assistance of databases. The resulting method appears as a useful tool for the characterization of NPS in mixtures, which is essential for forensic laboratories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
10.00%
发文量
99
审稿时长
1 months
期刊介绍: MRC is devoted to the rapid publication of papers which are concerned with the development of magnetic resonance techniques, or in which the application of such techniques plays a pivotal part. Contributions from scientists working in all areas of NMR, ESR and NQR are invited, and papers describing applications in all branches of chemistry, structural biology and materials chemistry are published. The journal is of particular interest not only to scientists working in academic research, but also those working in commercial organisations who need to keep up-to-date with the latest practical applications of magnetic resonance techniques.
期刊最新文献
Structural Elucidation and NMR Spectral Assignments of New Diphenyl Ether Derivatives From Liuweizhiji Gegen-Sangshen Oral Liquid. Liquid-Phase NMR of Humic and Fulvic Acids. Two New Alkaloids of the Endophytic Fungus Rhizopus oryzae From Atractylodes macrocephala Koidz. HRMAS NMR for Studying Solvent-Induced Mobility of Polymer Chains and Metallocene Migration Into Low-Density Polyethylene (LDPE). Structural Elucidation and Complete NMR Spectral Assignments of Monascus Monacolin Analogs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1