Nosarieme Omoregie Abey, Osaretin Albert Taiwo Ebuehi, Ngozi Awa Imaga
{"title":"围产期饮食蛋白质缺乏对F1和F2代大鼠神经化学物质和细胞结构平衡的影响。","authors":"Nosarieme Omoregie Abey, Osaretin Albert Taiwo Ebuehi, Ngozi Awa Imaga","doi":"10.1080/1028415X.2023.2285085","DOIUrl":null,"url":null,"abstract":"<p><p>Protein deficiency, characterized by an inadequate intake of protein in the diet that fails to meet the body's physiological requirements across various stages, can lead to detrimental outcomes. This is of interest due to the persistent low protein content in staple foods and suboptimal dietary patterns. The study sought to assess the intergenerational repercussions of dietary protein deficiency on specific neurochemicals and the cytoarchitecture of the brain within the F1 and F2 generations of rats. The rats were categorized into four groups based on the protein content percentage in their diets: 21% protein diet (21%PD), 10% protein diet (10%PD), 5% protein diet (5%PD), and control diet. Neurobehavior was assessed, while brain serotonin and dopamine levels were measured using HPLC. BDNF and GDNF expression in the hippocampal and prefrontal (PFC) sections, Immunohistochemical investigations of the morphological impact on the hippocampus and PFC, were also analyzed. The protein-deficient groups displayed anxiety, loss of striatal serotonin and increased dopamine levels, degenerated pyramidal cells in the hippocampus, and a prominent reduction in cellular density in the PFC. BDNF and GDNF levels in the PFC were reduced in the 5%PD group. GFAP astrocyte expression was observed to be increased in the prefrontal cortex (PFC) and hippocampal sections, indicating heightened reactivity. The density of hypertrophied cells across generations further suggests the presence of neuroinflammation. Changes in brain structure, neurotransmitter levels, and neurotrophic factor levels may indicate intergenerational alterations in critical regions, potentially serving as indicators of the brain's adaptive response to address protein deficiency across successive generations.</p>","PeriodicalId":19423,"journal":{"name":"Nutritional Neuroscience","volume":" ","pages":"962-977"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of perinatal dietary protein deficiency on some neurochemicals and cytoarchitectural balance, in F1 and F2 generations of rats.\",\"authors\":\"Nosarieme Omoregie Abey, Osaretin Albert Taiwo Ebuehi, Ngozi Awa Imaga\",\"doi\":\"10.1080/1028415X.2023.2285085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein deficiency, characterized by an inadequate intake of protein in the diet that fails to meet the body's physiological requirements across various stages, can lead to detrimental outcomes. This is of interest due to the persistent low protein content in staple foods and suboptimal dietary patterns. The study sought to assess the intergenerational repercussions of dietary protein deficiency on specific neurochemicals and the cytoarchitecture of the brain within the F1 and F2 generations of rats. The rats were categorized into four groups based on the protein content percentage in their diets: 21% protein diet (21%PD), 10% protein diet (10%PD), 5% protein diet (5%PD), and control diet. Neurobehavior was assessed, while brain serotonin and dopamine levels were measured using HPLC. BDNF and GDNF expression in the hippocampal and prefrontal (PFC) sections, Immunohistochemical investigations of the morphological impact on the hippocampus and PFC, were also analyzed. The protein-deficient groups displayed anxiety, loss of striatal serotonin and increased dopamine levels, degenerated pyramidal cells in the hippocampus, and a prominent reduction in cellular density in the PFC. BDNF and GDNF levels in the PFC were reduced in the 5%PD group. GFAP astrocyte expression was observed to be increased in the prefrontal cortex (PFC) and hippocampal sections, indicating heightened reactivity. The density of hypertrophied cells across generations further suggests the presence of neuroinflammation. Changes in brain structure, neurotransmitter levels, and neurotrophic factor levels may indicate intergenerational alterations in critical regions, potentially serving as indicators of the brain's adaptive response to address protein deficiency across successive generations.</p>\",\"PeriodicalId\":19423,\"journal\":{\"name\":\"Nutritional Neuroscience\",\"volume\":\" \",\"pages\":\"962-977\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutritional Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1028415X.2023.2285085\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutritional Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1028415X.2023.2285085","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Effect of perinatal dietary protein deficiency on some neurochemicals and cytoarchitectural balance, in F1 and F2 generations of rats.
Protein deficiency, characterized by an inadequate intake of protein in the diet that fails to meet the body's physiological requirements across various stages, can lead to detrimental outcomes. This is of interest due to the persistent low protein content in staple foods and suboptimal dietary patterns. The study sought to assess the intergenerational repercussions of dietary protein deficiency on specific neurochemicals and the cytoarchitecture of the brain within the F1 and F2 generations of rats. The rats were categorized into four groups based on the protein content percentage in their diets: 21% protein diet (21%PD), 10% protein diet (10%PD), 5% protein diet (5%PD), and control diet. Neurobehavior was assessed, while brain serotonin and dopamine levels were measured using HPLC. BDNF and GDNF expression in the hippocampal and prefrontal (PFC) sections, Immunohistochemical investigations of the morphological impact on the hippocampus and PFC, were also analyzed. The protein-deficient groups displayed anxiety, loss of striatal serotonin and increased dopamine levels, degenerated pyramidal cells in the hippocampus, and a prominent reduction in cellular density in the PFC. BDNF and GDNF levels in the PFC were reduced in the 5%PD group. GFAP astrocyte expression was observed to be increased in the prefrontal cortex (PFC) and hippocampal sections, indicating heightened reactivity. The density of hypertrophied cells across generations further suggests the presence of neuroinflammation. Changes in brain structure, neurotransmitter levels, and neurotrophic factor levels may indicate intergenerational alterations in critical regions, potentially serving as indicators of the brain's adaptive response to address protein deficiency across successive generations.
期刊介绍:
Nutritional Neuroscience is an international, interdisciplinary broad-based, online journal for reporting both basic and clinical research in the field of nutrition that relates to the central and peripheral nervous system. Studies may include the role of different components of normal diet (protein, carbohydrate, fat, moderate use of alcohol, etc.), dietary supplements (minerals, vitamins, hormones, herbs, etc.), and food additives (artificial flavours, colours, sweeteners, etc.) on neurochemistry, neurobiology, and behavioural biology of all vertebrate and invertebrate organisms. Ideally this journal will serve as a forum for neuroscientists, nutritionists, neurologists, psychiatrists, and those interested in preventive medicine.