Johannes Körnig , Kris Ortizo , Theresa Sporer , Zhi-Ling Yang , Franziska Beran
{"title":"不同的黑芥子酶能激活辣根蚤甲虫幼虫和成虫体内的硫代葡萄糖苷。","authors":"Johannes Körnig , Kris Ortizo , Theresa Sporer , Zhi-Ling Yang , Franziska Beran","doi":"10.1016/j.ibmb.2023.104040","DOIUrl":null,"url":null,"abstract":"<div><p>β-Glucosidases play an important role in the chemical defense of many insects by hydrolyzing and thereby activating glucosylated pro-toxins that are either synthesized <em>de novo</em> or sequestered from the insect's diet. The horseradish flea beetle, <em>Phyllotreta armoraciae</em>, sequesters pro-toxic glucosinolates from its brassicaceous host plants and possesses endogenous <em>β</em>-thioglucosidase enzymes, known as myrosinases, for glucosinolate activation. Here, we identify three myrosinase genes in <em>P. armoraciae</em> (<em>PaMyr</em>) with distinct expression patterns during beetle ontogeny. By using RNA interference, we demonstrate that <em>PaMyr1</em> is responsible for myrosinase activity in adults, whereas <em>PaMyr2</em> is responsible for myrosinase activity in larvae. Compared to <em>PaMyr1</em> and <em>PaMyr2</em>, <em>PaMyr3</em> was only weakly expressed in our laboratory population, but may contribute to myrosinase activity in larvae. Silencing of <em>PaMyr2</em> resulted in lower larval survival in a predation experiment and also reduced the breakdown of sequestered glucosinolates in uninjured larvae. This suggests that PaMyr2 is involved in both activated defense and the endogenous turnover of sequestered glucosinolates in <em>P. armoraciae</em> larvae. In activity assays with recombinant enzymes, PaMyr1 and PaMyr2 preferred different glucosinolates as substrates, which was consistent with the enzyme activities in crude protein extracts from adults and larvae, respectively. These differences were unexpected because larvae and adults sequester the same glucosinolates. Possible reasons for different myrosinase activities in <em>Phyllotreta</em> larvae and adults are discussed.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"163 ","pages":"Article 104040"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0965174823001340/pdfft?md5=1815c9718fc2f2040f147ace24a130dc&pid=1-s2.0-S0965174823001340-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Different myrosinases activate sequestered glucosinolates in larvae and adults of the horseradish flea beetle\",\"authors\":\"Johannes Körnig , Kris Ortizo , Theresa Sporer , Zhi-Ling Yang , Franziska Beran\",\"doi\":\"10.1016/j.ibmb.2023.104040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>β-Glucosidases play an important role in the chemical defense of many insects by hydrolyzing and thereby activating glucosylated pro-toxins that are either synthesized <em>de novo</em> or sequestered from the insect's diet. The horseradish flea beetle, <em>Phyllotreta armoraciae</em>, sequesters pro-toxic glucosinolates from its brassicaceous host plants and possesses endogenous <em>β</em>-thioglucosidase enzymes, known as myrosinases, for glucosinolate activation. Here, we identify three myrosinase genes in <em>P. armoraciae</em> (<em>PaMyr</em>) with distinct expression patterns during beetle ontogeny. By using RNA interference, we demonstrate that <em>PaMyr1</em> is responsible for myrosinase activity in adults, whereas <em>PaMyr2</em> is responsible for myrosinase activity in larvae. Compared to <em>PaMyr1</em> and <em>PaMyr2</em>, <em>PaMyr3</em> was only weakly expressed in our laboratory population, but may contribute to myrosinase activity in larvae. Silencing of <em>PaMyr2</em> resulted in lower larval survival in a predation experiment and also reduced the breakdown of sequestered glucosinolates in uninjured larvae. This suggests that PaMyr2 is involved in both activated defense and the endogenous turnover of sequestered glucosinolates in <em>P. armoraciae</em> larvae. In activity assays with recombinant enzymes, PaMyr1 and PaMyr2 preferred different glucosinolates as substrates, which was consistent with the enzyme activities in crude protein extracts from adults and larvae, respectively. These differences were unexpected because larvae and adults sequester the same glucosinolates. Possible reasons for different myrosinase activities in <em>Phyllotreta</em> larvae and adults are discussed.</p></div>\",\"PeriodicalId\":330,\"journal\":{\"name\":\"Insect Biochemistry and Molecular Biology\",\"volume\":\"163 \",\"pages\":\"Article 104040\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0965174823001340/pdfft?md5=1815c9718fc2f2040f147ace24a130dc&pid=1-s2.0-S0965174823001340-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0965174823001340\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174823001340","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Different myrosinases activate sequestered glucosinolates in larvae and adults of the horseradish flea beetle
β-Glucosidases play an important role in the chemical defense of many insects by hydrolyzing and thereby activating glucosylated pro-toxins that are either synthesized de novo or sequestered from the insect's diet. The horseradish flea beetle, Phyllotreta armoraciae, sequesters pro-toxic glucosinolates from its brassicaceous host plants and possesses endogenous β-thioglucosidase enzymes, known as myrosinases, for glucosinolate activation. Here, we identify three myrosinase genes in P. armoraciae (PaMyr) with distinct expression patterns during beetle ontogeny. By using RNA interference, we demonstrate that PaMyr1 is responsible for myrosinase activity in adults, whereas PaMyr2 is responsible for myrosinase activity in larvae. Compared to PaMyr1 and PaMyr2, PaMyr3 was only weakly expressed in our laboratory population, but may contribute to myrosinase activity in larvae. Silencing of PaMyr2 resulted in lower larval survival in a predation experiment and also reduced the breakdown of sequestered glucosinolates in uninjured larvae. This suggests that PaMyr2 is involved in both activated defense and the endogenous turnover of sequestered glucosinolates in P. armoraciae larvae. In activity assays with recombinant enzymes, PaMyr1 and PaMyr2 preferred different glucosinolates as substrates, which was consistent with the enzyme activities in crude protein extracts from adults and larvae, respectively. These differences were unexpected because larvae and adults sequester the same glucosinolates. Possible reasons for different myrosinase activities in Phyllotreta larvae and adults are discussed.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.