增强自身免疫性疾病治疗活性的白介素-2分子工程

IF 5.4 2区 医学 Q1 IMMUNOLOGY BioDrugs Pub Date : 2024-03-01 Epub Date: 2023-11-24 DOI:10.1007/s40259-023-00635-0
Luke M Tomasovic, Kathy Liu, Derek VanDyke, Charina S Fabilane, Jamie B Spangler
{"title":"增强自身免疫性疾病治疗活性的白介素-2分子工程","authors":"Luke M Tomasovic, Kathy Liu, Derek VanDyke, Charina S Fabilane, Jamie B Spangler","doi":"10.1007/s40259-023-00635-0","DOIUrl":null,"url":null,"abstract":"<p><p>The interleukin-2 (IL-2) cytokine plays a crucial role in regulating immune responses and maintaining immune homeostasis. Its immunosuppressive effects have been harnessed therapeutically via administration of low cytokine doses. Low-dose IL-2 has shown promise in the treatment of various autoimmune and inflammatory diseases; however, the clinical use of IL-2 is complicated by its toxicity, its pleiotropic effects on both immunostimulatory and immunosuppressive cell subsets, and its short serum half-life, which collectively limit the therapeutic window. As a result, there remains a considerable need for IL-2-based autoimmune disease therapies that can selectively target regulatory T cells with minimal off-target binding to immune effector cells in order to prevent cytokine-mediated toxicities and optimize therapeutic efficacy. In this review, we discuss exciting advances in IL-2 engineering that are empowering the development of novel therapies to treat autoimmune conditions. We describe the structural mechanisms of IL-2 signaling, explore current applications of IL-2-based compounds as immunoregulatory interventions, and detail the progress and challenges associated with clinical adoption of IL-2 therapies. In particular, we focus on protein engineering approaches that have been employed to optimize the regulatory T-cell bias of IL-2, including structure-guided or computational design of cytokine mutants, conjugation to polyethylene glycol, and the development of IL-2 fusion proteins. We also consider future research directions for enhancing the translational potential of engineered IL-2-based therapies. Overall, this review highlights the immense potential to leverage the immunoregulatory properties of IL-2 for targeted treatment of autoimmune and inflammatory diseases.</p>","PeriodicalId":9022,"journal":{"name":"BioDrugs","volume":" ","pages":"227-248"},"PeriodicalIF":5.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947368/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular Engineering of Interleukin-2 for Enhanced Therapeutic Activity in Autoimmune Diseases.\",\"authors\":\"Luke M Tomasovic, Kathy Liu, Derek VanDyke, Charina S Fabilane, Jamie B Spangler\",\"doi\":\"10.1007/s40259-023-00635-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The interleukin-2 (IL-2) cytokine plays a crucial role in regulating immune responses and maintaining immune homeostasis. Its immunosuppressive effects have been harnessed therapeutically via administration of low cytokine doses. Low-dose IL-2 has shown promise in the treatment of various autoimmune and inflammatory diseases; however, the clinical use of IL-2 is complicated by its toxicity, its pleiotropic effects on both immunostimulatory and immunosuppressive cell subsets, and its short serum half-life, which collectively limit the therapeutic window. As a result, there remains a considerable need for IL-2-based autoimmune disease therapies that can selectively target regulatory T cells with minimal off-target binding to immune effector cells in order to prevent cytokine-mediated toxicities and optimize therapeutic efficacy. In this review, we discuss exciting advances in IL-2 engineering that are empowering the development of novel therapies to treat autoimmune conditions. We describe the structural mechanisms of IL-2 signaling, explore current applications of IL-2-based compounds as immunoregulatory interventions, and detail the progress and challenges associated with clinical adoption of IL-2 therapies. In particular, we focus on protein engineering approaches that have been employed to optimize the regulatory T-cell bias of IL-2, including structure-guided or computational design of cytokine mutants, conjugation to polyethylene glycol, and the development of IL-2 fusion proteins. We also consider future research directions for enhancing the translational potential of engineered IL-2-based therapies. Overall, this review highlights the immense potential to leverage the immunoregulatory properties of IL-2 for targeted treatment of autoimmune and inflammatory diseases.</p>\",\"PeriodicalId\":9022,\"journal\":{\"name\":\"BioDrugs\",\"volume\":\" \",\"pages\":\"227-248\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947368/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioDrugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40259-023-00635-0\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioDrugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40259-023-00635-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

白细胞介素-2 (IL-2)细胞因子在调节免疫反应和维持免疫稳态中起重要作用。它的免疫抑制作用已通过低剂量的细胞因子治疗利用。低剂量IL-2在治疗多种自身免疫性和炎症性疾病方面显示出前景;然而,IL-2的临床应用因其毒性、对免疫刺激和免疫抑制细胞亚群的多效性以及其较短的血清半衰期而变得复杂,这些因素共同限制了治疗窗口期。因此,仍然需要基于il -2的自身免疫性疾病疗法,这种疗法可以选择性地靶向调节性T细胞,并且与免疫效应细胞的脱靶结合最小,以防止细胞因子介导的毒性并优化治疗效果。在这篇综述中,我们讨论了IL-2工程方面令人兴奋的进展,这些进展正在推动开发治疗自身免疫性疾病的新疗法。我们描述了IL-2信号传导的结构机制,探讨了目前基于IL-2的化合物作为免疫调节干预措施的应用,并详细介绍了临床采用IL-2治疗的进展和挑战。我们特别关注用于优化IL-2的调节性t细胞偏倚的蛋白质工程方法,包括细胞因子突变体的结构指导或计算设计,与聚乙二醇的结合以及IL-2融合蛋白的开发。我们还考虑了未来的研究方向,以增强基于工程il -2的疗法的转化潜力。总之,这篇综述强调了利用IL-2的免疫调节特性靶向治疗自身免疫性和炎症性疾病的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular Engineering of Interleukin-2 for Enhanced Therapeutic Activity in Autoimmune Diseases.

The interleukin-2 (IL-2) cytokine plays a crucial role in regulating immune responses and maintaining immune homeostasis. Its immunosuppressive effects have been harnessed therapeutically via administration of low cytokine doses. Low-dose IL-2 has shown promise in the treatment of various autoimmune and inflammatory diseases; however, the clinical use of IL-2 is complicated by its toxicity, its pleiotropic effects on both immunostimulatory and immunosuppressive cell subsets, and its short serum half-life, which collectively limit the therapeutic window. As a result, there remains a considerable need for IL-2-based autoimmune disease therapies that can selectively target regulatory T cells with minimal off-target binding to immune effector cells in order to prevent cytokine-mediated toxicities and optimize therapeutic efficacy. In this review, we discuss exciting advances in IL-2 engineering that are empowering the development of novel therapies to treat autoimmune conditions. We describe the structural mechanisms of IL-2 signaling, explore current applications of IL-2-based compounds as immunoregulatory interventions, and detail the progress and challenges associated with clinical adoption of IL-2 therapies. In particular, we focus on protein engineering approaches that have been employed to optimize the regulatory T-cell bias of IL-2, including structure-guided or computational design of cytokine mutants, conjugation to polyethylene glycol, and the development of IL-2 fusion proteins. We also consider future research directions for enhancing the translational potential of engineered IL-2-based therapies. Overall, this review highlights the immense potential to leverage the immunoregulatory properties of IL-2 for targeted treatment of autoimmune and inflammatory diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioDrugs
BioDrugs 医学-免疫学
CiteScore
12.60
自引率
2.90%
发文量
50
审稿时长
>12 weeks
期刊介绍: An essential resource for R&D professionals and clinicians with an interest in biologic therapies. BioDrugs covers the development and therapeutic application of biotechnology-based pharmaceuticals and diagnostic products for the treatment of human disease. BioDrugs offers a range of additional enhanced features designed to increase the visibility, readership and educational value of the journal’s content. Each article is accompanied by a Key Points summary, giving a time-efficient overview of the content to a wide readership. Articles may be accompanied by plain language summaries to assist patients, caregivers and others in understanding important medical advances. The journal also provides the option to include various other types of enhanced features including slide sets, videos and animations. All enhanced features are peer reviewed to the same high standard as the article itself. Peer review is conducted using Editorial Manager®, supported by a database of international experts. This database is shared with other Adis journals.
期刊最新文献
Effect of Biological Therapy for Psoriasis on the Development of Psoriatic Arthritis: A Population-Based Cohort Study. Biochemical Amenability in Fabry Patients Under Chaperone Therapy-How and When to Test? Introducing the Biosimilar Paradigm to Neurology: The Totality of Evidence for the First Biosimilar Natalizumab. Patient Satisfaction and Experience with CT-P17 Following Transition from Reference Adalimumab or Another Adalimumab Biosimilar: Results from the Real-World YU-MATTER Study. Pharmacokinetics, Safety, and Immunogenicity of a Biosimilar of Nivolumab (LY01015): A Randomized, Double-Blind, Parallel-Controlled Phase I Clinical Trial in Healthy Chinese Male Subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1