高磁场下异核SABRE超极化的绝热方法

Danil A. Markelov , Vitaly P. Kozinenko , Alexandra V. Yurkovskaya , Konstantin L. Ivanov
{"title":"高磁场下异核SABRE超极化的绝热方法","authors":"Danil A. Markelov ,&nbsp;Vitaly P. Kozinenko ,&nbsp;Alexandra V. Yurkovskaya ,&nbsp;Konstantin L. Ivanov","doi":"10.1016/j.jmro.2023.100139","DOIUrl":null,"url":null,"abstract":"<div><p>Signal Amplification By Reversible Exchange (SABRE) is a technique aimed at enhancing weak NMR signals of heteronuclei by utilizing the non-equilibrium spin order of parahydrogen. SABRE polarization transfer takes place by means of metalorganic complexes that interact with parahydrogen and the substrate to be polarized in a reversible manner. To achieve substrate hyperpolarization in the high magnetic field of an NMR magnet, radiofrequency (RF) excitation is required. There are two general options for the RF field amplitude: constant or modulated. To date, there has been limited optimization of the adiabatic SABRE conditions. In SABRE, the presence of chemical exchange significantly complicates the spin dynamics involved in polarization transfer and the optimization of adiabatic RF sweeps. We conducted a comprehensive analysis of high-field SABRE pulse sequences with RF sweeps on the heteronuclear channel, specifically <sup>15</sup>N. We proposed a simple method for optimizing the amplitude modulation profile of the RF field, which is efficient for systems undergoing chemical exchange. Our approach involved utilizing the dependence of <sup>15</sup>N polarization on the amplitude of the constant RF field on the <sup>15</sup>N channel. By employing the \"optimal\" adiabatic RF profile, we achieved a 2.5-fold increase in <sup>15</sup>N SABRE-derived polarization at high magnetic field compared to a linear sweep. We theoretically assessed the benefit of RF sweeps over constant RF fields for SABRE at high magnetic field. We demonstrated experimentally that at temperatures <span><math><mrow><mo>−</mo><msup><mn>5</mn><mo>∘</mo></msup></mrow></math></span>C - <span><math><mrow><mo>+</mo><msup><mn>10</mn><mo>∘</mo></msup></mrow></math></span>C RF sweeps are more efficient than constant RF field. Maximal increase in <sup>15</sup>N polarization achieved was 1.7-fold for bound and 1.4-fold for free substrate. We attribute this increase in polarization to the adiabaticity of the polarization transfer process. This behavior was explained via numerical solution of SABRE master equation for different dissociation rate constants.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100139"},"PeriodicalIF":2.6240,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266644102300047X/pdfft?md5=a7009ba898d68748a02dd027da6afc07&pid=1-s2.0-S266644102300047X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Adiabatic approach for heteronuclear SABRE hyperpolarization at high magnetic field\",\"authors\":\"Danil A. Markelov ,&nbsp;Vitaly P. Kozinenko ,&nbsp;Alexandra V. Yurkovskaya ,&nbsp;Konstantin L. Ivanov\",\"doi\":\"10.1016/j.jmro.2023.100139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Signal Amplification By Reversible Exchange (SABRE) is a technique aimed at enhancing weak NMR signals of heteronuclei by utilizing the non-equilibrium spin order of parahydrogen. SABRE polarization transfer takes place by means of metalorganic complexes that interact with parahydrogen and the substrate to be polarized in a reversible manner. To achieve substrate hyperpolarization in the high magnetic field of an NMR magnet, radiofrequency (RF) excitation is required. There are two general options for the RF field amplitude: constant or modulated. To date, there has been limited optimization of the adiabatic SABRE conditions. In SABRE, the presence of chemical exchange significantly complicates the spin dynamics involved in polarization transfer and the optimization of adiabatic RF sweeps. We conducted a comprehensive analysis of high-field SABRE pulse sequences with RF sweeps on the heteronuclear channel, specifically <sup>15</sup>N. We proposed a simple method for optimizing the amplitude modulation profile of the RF field, which is efficient for systems undergoing chemical exchange. Our approach involved utilizing the dependence of <sup>15</sup>N polarization on the amplitude of the constant RF field on the <sup>15</sup>N channel. By employing the \\\"optimal\\\" adiabatic RF profile, we achieved a 2.5-fold increase in <sup>15</sup>N SABRE-derived polarization at high magnetic field compared to a linear sweep. We theoretically assessed the benefit of RF sweeps over constant RF fields for SABRE at high magnetic field. We demonstrated experimentally that at temperatures <span><math><mrow><mo>−</mo><msup><mn>5</mn><mo>∘</mo></msup></mrow></math></span>C - <span><math><mrow><mo>+</mo><msup><mn>10</mn><mo>∘</mo></msup></mrow></math></span>C RF sweeps are more efficient than constant RF field. Maximal increase in <sup>15</sup>N polarization achieved was 1.7-fold for bound and 1.4-fold for free substrate. We attribute this increase in polarization to the adiabaticity of the polarization transfer process. This behavior was explained via numerical solution of SABRE master equation for different dissociation rate constants.</p></div>\",\"PeriodicalId\":365,\"journal\":{\"name\":\"Journal of Magnetic Resonance Open\",\"volume\":\"16 \",\"pages\":\"Article 100139\"},\"PeriodicalIF\":2.6240,\"publicationDate\":\"2023-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266644102300047X/pdfft?md5=a7009ba898d68748a02dd027da6afc07&pid=1-s2.0-S266644102300047X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetic Resonance Open\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266644102300047X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266644102300047X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可逆交换信号放大(SABRE)是利用对氢的非平衡自旋序增强异核弱核磁共振信号的一种技术。SABRE极化转移是通过金属有机配合物与对氢相互作用和基底以可逆方式极化而发生的。为了在核磁共振磁体的高磁场中实现衬底超极化,需要射频(RF)激励。射频场振幅一般有两种选择:恒定或调制。迄今为止,对SABRE绝热条件的优化还很有限。在SABRE中,化学交换的存在显著地使极化传递和绝热射频扫描优化中的自旋动力学复杂化。我们对高场SABRE脉冲序列在异核通道(特别是15N)上进行了射频扫描的综合分析。我们提出了一种简单的方法来优化射频场的调幅曲线,这是有效的系统进行化学交换。我们的方法涉及利用15N极化对15N通道上恒定射频场振幅的依赖性。通过采用“最佳”绝热射频剖面,在高磁场下,与线性扫描相比,我们实现了15N sabre衍生极化增加2.5倍。我们从理论上评估了在高磁场下恒定射频场的射频扫描对SABRE的好处。我们通过实验证明,在−5°C - +10°C的温度下,射频扫描比恒定的射频场更有效。得到的15N极化最大增幅为束缚基板的1.7倍和自由基板的1.4倍。我们把这种极化的增加归因于极化传递过程的绝热性。通过SABRE主方程在不同解离速率常数下的数值解来解释这一行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adiabatic approach for heteronuclear SABRE hyperpolarization at high magnetic field

Signal Amplification By Reversible Exchange (SABRE) is a technique aimed at enhancing weak NMR signals of heteronuclei by utilizing the non-equilibrium spin order of parahydrogen. SABRE polarization transfer takes place by means of metalorganic complexes that interact with parahydrogen and the substrate to be polarized in a reversible manner. To achieve substrate hyperpolarization in the high magnetic field of an NMR magnet, radiofrequency (RF) excitation is required. There are two general options for the RF field amplitude: constant or modulated. To date, there has been limited optimization of the adiabatic SABRE conditions. In SABRE, the presence of chemical exchange significantly complicates the spin dynamics involved in polarization transfer and the optimization of adiabatic RF sweeps. We conducted a comprehensive analysis of high-field SABRE pulse sequences with RF sweeps on the heteronuclear channel, specifically 15N. We proposed a simple method for optimizing the amplitude modulation profile of the RF field, which is efficient for systems undergoing chemical exchange. Our approach involved utilizing the dependence of 15N polarization on the amplitude of the constant RF field on the 15N channel. By employing the "optimal" adiabatic RF profile, we achieved a 2.5-fold increase in 15N SABRE-derived polarization at high magnetic field compared to a linear sweep. We theoretically assessed the benefit of RF sweeps over constant RF fields for SABRE at high magnetic field. We demonstrated experimentally that at temperatures 5C - +10C RF sweeps are more efficient than constant RF field. Maximal increase in 15N polarization achieved was 1.7-fold for bound and 1.4-fold for free substrate. We attribute this increase in polarization to the adiabaticity of the polarization transfer process. This behavior was explained via numerical solution of SABRE master equation for different dissociation rate constants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
期刊最新文献
Improved 2D hydride detection for NMR-chemosensing via p‐H2 Hyperpolarization A practical guide to metal ions dynamic nuclear polarization in materials science Current state of the art of analyte scope in urine metabolome analysis by non-hydrogenative PHIP Natural abundance 195Pt-13C correlation NMR spectroscopy on surfaces enabled by fast MAS dynamic nuclear polarization Nuclear hyperpolarization in electron-transfer proteins: Revealing unexpected light-induced 15N signals with field-cycling magic-angle spinning NMR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1