用EM算法将Tweedie的复合泊松模型拟合到纯溢价

IF 1.9 2区 经济学 Q2 ECONOMICS Insurance Mathematics & Economics Pub Date : 2023-11-17 DOI:10.1016/j.insmatheco.2023.10.002
Guangyuan Gao
{"title":"用EM算法将Tweedie的复合泊松模型拟合到纯溢价","authors":"Guangyuan Gao","doi":"10.1016/j.insmatheco.2023.10.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>We consider the situation when the number of claims is unavailable, and a Tweedie's compound Poisson model is fitted to the observed pure premium. Currently, there are two different models based on the Tweedie distribution: a single </span>generalized linear model<span><span> (GLM) for mean and a double generalized linear model (DGLM) for both mean and dispersion. Although the DGLM approach facilitates the heterogeneous dispersion, its soundness relies on the accuracy of the saddlepoint approximation, which is poor when the proportion of zero claims is large. For both models, the power variance parameter is estimated by considering the profile likelihood, which is computationally expensive. We propose a new approach to fit the Tweedie model with the </span>EM algorithm, which is equivalent to an iteratively re-weighted Poisson-gamma model on an augmented data set. The proposed approach addresses the heterogeneous dispersion without needing the saddlepoint approximation, and the power variance parameter is estimated during the model fitting. Numerical examples show that our proposed approach is superior to the two competing models.</span></p></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"114 ","pages":"Pages 29-42"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fitting Tweedie's compound Poisson model to pure premium with the EM algorithm\",\"authors\":\"Guangyuan Gao\",\"doi\":\"10.1016/j.insmatheco.2023.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We consider the situation when the number of claims is unavailable, and a Tweedie's compound Poisson model is fitted to the observed pure premium. Currently, there are two different models based on the Tweedie distribution: a single </span>generalized linear model<span><span> (GLM) for mean and a double generalized linear model (DGLM) for both mean and dispersion. Although the DGLM approach facilitates the heterogeneous dispersion, its soundness relies on the accuracy of the saddlepoint approximation, which is poor when the proportion of zero claims is large. For both models, the power variance parameter is estimated by considering the profile likelihood, which is computationally expensive. We propose a new approach to fit the Tweedie model with the </span>EM algorithm, which is equivalent to an iteratively re-weighted Poisson-gamma model on an augmented data set. The proposed approach addresses the heterogeneous dispersion without needing the saddlepoint approximation, and the power variance parameter is estimated during the model fitting. Numerical examples show that our proposed approach is superior to the two competing models.</span></p></div>\",\"PeriodicalId\":54974,\"journal\":{\"name\":\"Insurance Mathematics & Economics\",\"volume\":\"114 \",\"pages\":\"Pages 29-42\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insurance Mathematics & Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167668723000872\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668723000872","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑索赔数量不可用的情况,Tweedie的复合泊松模型拟合观察到的纯保费。目前,基于Tweedie分布有两种不同的模型:均值的单广义线性模型(GLM)和均值和离散度的双广义线性模型(DGLM)。虽然DGLM方法有利于非均匀分散,但其可靠性依赖于鞍点近似的准确性,当零索赔比例较大时,鞍点近似的准确性较差。对于这两种模型,功率方差参数都是通过考虑轮廓似然来估计的,计算量很大。我们提出了一种用EM算法拟合Tweedie模型的新方法,该方法相当于在增广数据集上迭代地重新加权泊松-伽马模型。该方法在不需要鞍点近似的情况下解决了非均匀色散问题,并在模型拟合过程中估计了功率方差参数。数值算例表明,本文提出的方法优于两种竞争模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fitting Tweedie's compound Poisson model to pure premium with the EM algorithm

We consider the situation when the number of claims is unavailable, and a Tweedie's compound Poisson model is fitted to the observed pure premium. Currently, there are two different models based on the Tweedie distribution: a single generalized linear model (GLM) for mean and a double generalized linear model (DGLM) for both mean and dispersion. Although the DGLM approach facilitates the heterogeneous dispersion, its soundness relies on the accuracy of the saddlepoint approximation, which is poor when the proportion of zero claims is large. For both models, the power variance parameter is estimated by considering the profile likelihood, which is computationally expensive. We propose a new approach to fit the Tweedie model with the EM algorithm, which is equivalent to an iteratively re-weighted Poisson-gamma model on an augmented data set. The proposed approach addresses the heterogeneous dispersion without needing the saddlepoint approximation, and the power variance parameter is estimated during the model fitting. Numerical examples show that our proposed approach is superior to the two competing models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insurance Mathematics & Economics
Insurance Mathematics & Economics 管理科学-数学跨学科应用
CiteScore
3.40
自引率
15.80%
发文量
90
审稿时长
17.3 weeks
期刊介绍: Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world. Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.
期刊最新文献
A risk measurement approach from risk-averse stochastic optimization of score functions Comonotonicity and Pareto optimality, with application to collaborative insurance Automated machine learning in insurance Pension funds with longevity risk: An optimal portfolio insurance approach A new characterization of second-order stochastic dominance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1