利用机器学习中的集成分类器和数据增强技术增强帕金森病的识别

Mohammed Muzaffar Hussain , D. Weslin , S. Kumari , S. Umamaheswari , K. Kamalakannan
{"title":"利用机器学习中的集成分类器和数据增强技术增强帕金森病的识别","authors":"Mohammed Muzaffar Hussain ,&nbsp;D. Weslin ,&nbsp;S. Kumari ,&nbsp;S. Umamaheswari ,&nbsp;K. Kamalakannan","doi":"10.1016/j.ceh.2023.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>Parkinson’s disease (PD) is a devastating neurological syndrome that affects millions of people worldwide. For the successful treatment and control of PD, it is essential to detect it early and diagnose it accurately. Machine learning (ML) algorithms have shown promising results in identifying PD based on various clinical and non-invasive measures. This paper proposes an ensemble classifier-based method to identify PD using ML algorithms. We consider two classes of PD, namely, healthy controls and PD patients. Our approach involves the use of feature selection, feature extraction, and classification techniques to develop a robust and accurate model. We use a dataset that includes clinical measures and necessary features from patients with PD and healthy controls. Our outcomes demonstrate the effectiveness of the proposed method in accurately identifying PD and highlight the importance of ML algorithms in assisting with early detection and diagnosis of PD.</p></div>","PeriodicalId":100268,"journal":{"name":"Clinical eHealth","volume":"6 ","pages":"Pages 150-158"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S258891412300028X/pdfft?md5=6f306950333c04441c20227f9535ba22&pid=1-s2.0-S258891412300028X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing Parkinson’s disease identification using ensemble classifier and data augmentation techniques in machine learning\",\"authors\":\"Mohammed Muzaffar Hussain ,&nbsp;D. Weslin ,&nbsp;S. Kumari ,&nbsp;S. Umamaheswari ,&nbsp;K. Kamalakannan\",\"doi\":\"10.1016/j.ceh.2023.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Parkinson’s disease (PD) is a devastating neurological syndrome that affects millions of people worldwide. For the successful treatment and control of PD, it is essential to detect it early and diagnose it accurately. Machine learning (ML) algorithms have shown promising results in identifying PD based on various clinical and non-invasive measures. This paper proposes an ensemble classifier-based method to identify PD using ML algorithms. We consider two classes of PD, namely, healthy controls and PD patients. Our approach involves the use of feature selection, feature extraction, and classification techniques to develop a robust and accurate model. We use a dataset that includes clinical measures and necessary features from patients with PD and healthy controls. Our outcomes demonstrate the effectiveness of the proposed method in accurately identifying PD and highlight the importance of ML algorithms in assisting with early detection and diagnosis of PD.</p></div>\",\"PeriodicalId\":100268,\"journal\":{\"name\":\"Clinical eHealth\",\"volume\":\"6 \",\"pages\":\"Pages 150-158\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S258891412300028X/pdfft?md5=6f306950333c04441c20227f9535ba22&pid=1-s2.0-S258891412300028X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical eHealth\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S258891412300028X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical eHealth","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258891412300028X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)是一种毁灭性的神经系统综合症,影响着全世界数百万人。早期发现和准确诊断PD是成功治疗和控制PD的关键。机器学习(ML)算法在基于各种临床和非侵入性措施识别PD方面显示出有希望的结果。本文提出了一种基于集成分类器的PD识别方法。我们考虑两类PD,即健康对照和PD患者。我们的方法包括使用特征选择、特征提取和分类技术来开发一个鲁棒和准确的模型。我们使用的数据集包括PD患者和健康对照的临床测量和必要特征。我们的结果证明了所提出的方法在准确识别PD方面的有效性,并强调了ML算法在协助PD早期检测和诊断方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Parkinson’s disease identification using ensemble classifier and data augmentation techniques in machine learning

Parkinson’s disease (PD) is a devastating neurological syndrome that affects millions of people worldwide. For the successful treatment and control of PD, it is essential to detect it early and diagnose it accurately. Machine learning (ML) algorithms have shown promising results in identifying PD based on various clinical and non-invasive measures. This paper proposes an ensemble classifier-based method to identify PD using ML algorithms. We consider two classes of PD, namely, healthy controls and PD patients. Our approach involves the use of feature selection, feature extraction, and classification techniques to develop a robust and accurate model. We use a dataset that includes clinical measures and necessary features from patients with PD and healthy controls. Our outcomes demonstrate the effectiveness of the proposed method in accurately identifying PD and highlight the importance of ML algorithms in assisting with early detection and diagnosis of PD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
期刊最新文献
“AI et al.” The perils of overreliance on Artificial Intelligence by authors in scientific research A systematic review of eHealth and mHealth interventions for lymphedema patients Machine learning and transfer learning techniques for accurate brain tumor classification Internet of Things in healthcare: An adaptive ethical framework for IoT in digital health IoMT Tsukamoto Type-2 fuzzy expert system for tuberculosis and Alzheimer’s disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1