考虑土壤变异性的海上管道落物冲击载荷损伤机理及失效风险分析

IF 4 2区 工程技术 Q1 ENGINEERING, CIVIL Marine Structures Pub Date : 2023-11-22 DOI:10.1016/j.marstruc.2023.103544
Fengyuan Jiang , Enjin Zhao
{"title":"考虑土壤变异性的海上管道落物冲击载荷损伤机理及失效风险分析","authors":"Fengyuan Jiang ,&nbsp;Enjin Zhao","doi":"10.1016/j.marstruc.2023.103544","DOIUrl":null,"url":null,"abstract":"<div><p>Trench and burial, as a primary and effective protection measurement for offshore pipelines from impact loads, has received much research attention recently. Previous studies were usually performed based on the assumption that the soil material was homogeneous with deterministic mechanical properties. The soil spatial variability, which is demonstrated to have significant influences on the soil capacity in marine geotechnical analysis, has not been included. This study was motivated to investigate the response of the buried pipelines subjected to the impact loads, with special address on the soil variability. Firstly, a three-dimensional random large deformation finite element analysis model was developed, which was implemented by the field variable (FV) technique to map the non-stationary random field (NSRF) into the verified Coupled Eulerian-Lagrangian (CEL) model (Hereafter referred to as FVRCEL). Then the FVRCEL model was integrated with the Monte-Carlo simulation (MCS) to obtain the statistical characteristics of the pipeline structural response. The failure mechanisms of the pipeline in the random soil with different fluctuation scales were investigated, and a parametric study was performed to identify the influential factors. Finally, the failure probability curves and surfaces were presented, providing clues for the pipeline safety design. The results revealed that in general, more than 50 % of the realized NSRF scenarios in the random analysis yielded more severe dent damage than the deterministic result, indicating that the latter would underestimate the damage degree, which was more pronounced when the increasing gradient of soil strength was high. The horizontal fluctuation scale had a remarkable influence on the pipeline damage behaviours and the corresponding statistical characteristics, of which the inner mechanisms were discussed. From the probabilistic perspective, at most an extra failure probability of 75 % would be suffered if the soil variability was ignored.</p></div>","PeriodicalId":49879,"journal":{"name":"Marine Structures","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0951833923001776/pdfft?md5=d7f927c5b89379966653ab533036a715&pid=1-s2.0-S0951833923001776-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Damage mechanism and failure risk analysis of offshore pipelines subjected to impact loads from falling object, considering the soil variability\",\"authors\":\"Fengyuan Jiang ,&nbsp;Enjin Zhao\",\"doi\":\"10.1016/j.marstruc.2023.103544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Trench and burial, as a primary and effective protection measurement for offshore pipelines from impact loads, has received much research attention recently. Previous studies were usually performed based on the assumption that the soil material was homogeneous with deterministic mechanical properties. The soil spatial variability, which is demonstrated to have significant influences on the soil capacity in marine geotechnical analysis, has not been included. This study was motivated to investigate the response of the buried pipelines subjected to the impact loads, with special address on the soil variability. Firstly, a three-dimensional random large deformation finite element analysis model was developed, which was implemented by the field variable (FV) technique to map the non-stationary random field (NSRF) into the verified Coupled Eulerian-Lagrangian (CEL) model (Hereafter referred to as FVRCEL). Then the FVRCEL model was integrated with the Monte-Carlo simulation (MCS) to obtain the statistical characteristics of the pipeline structural response. The failure mechanisms of the pipeline in the random soil with different fluctuation scales were investigated, and a parametric study was performed to identify the influential factors. Finally, the failure probability curves and surfaces were presented, providing clues for the pipeline safety design. The results revealed that in general, more than 50 % of the realized NSRF scenarios in the random analysis yielded more severe dent damage than the deterministic result, indicating that the latter would underestimate the damage degree, which was more pronounced when the increasing gradient of soil strength was high. The horizontal fluctuation scale had a remarkable influence on the pipeline damage behaviours and the corresponding statistical characteristics, of which the inner mechanisms were discussed. From the probabilistic perspective, at most an extra failure probability of 75 % would be suffered if the soil variability was ignored.</p></div>\",\"PeriodicalId\":49879,\"journal\":{\"name\":\"Marine Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0951833923001776/pdfft?md5=d7f927c5b89379966653ab533036a715&pid=1-s2.0-S0951833923001776-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951833923001776\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951833923001776","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

海沟埋管作为海上管道抗冲击载荷的一种主要而有效的防护措施,近年来受到了广泛的关注。以往的研究通常是基于假设土壤材料是均匀的,具有确定的力学性质。土壤空间变异性在海洋岩土分析中被证明对土壤容量有显著影响,但未包括在内。本研究旨在探讨埋地管道在冲击荷载作用下的响应,并特别关注土壤的变异性。首先,建立三维随机大变形有限元分析模型,利用场变量(FV)技术将非平稳随机场(NSRF)映射到验证的耦合欧拉-拉格朗日(CEL)模型(以下简称FVRCEL)中;然后将FVRCEL模型与蒙特卡罗仿真(Monte-Carlo simulation, MCS)相结合,得到管道结构响应的统计特征。研究了不同波动尺度下管道在随机土壤中的破坏机制,并进行了参数化研究,以确定影响因素。最后给出了管道失效概率曲线和曲面,为管道安全设计提供了依据。结果表明,总体而言,随机分析中50%以上的NSRF情景比确定性结果产生更严重的凹痕破坏,表明后者低估了凹痕破坏程度,当土强度递增梯度较大时,这种情况更为明显。水平波动尺度对管道损伤行为及其统计特征有显著影响,并对其内在机理进行了探讨。从概率的角度来看,如果忽略土壤变异性,则最多会遭受75%的额外破坏概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Damage mechanism and failure risk analysis of offshore pipelines subjected to impact loads from falling object, considering the soil variability

Trench and burial, as a primary and effective protection measurement for offshore pipelines from impact loads, has received much research attention recently. Previous studies were usually performed based on the assumption that the soil material was homogeneous with deterministic mechanical properties. The soil spatial variability, which is demonstrated to have significant influences on the soil capacity in marine geotechnical analysis, has not been included. This study was motivated to investigate the response of the buried pipelines subjected to the impact loads, with special address on the soil variability. Firstly, a three-dimensional random large deformation finite element analysis model was developed, which was implemented by the field variable (FV) technique to map the non-stationary random field (NSRF) into the verified Coupled Eulerian-Lagrangian (CEL) model (Hereafter referred to as FVRCEL). Then the FVRCEL model was integrated with the Monte-Carlo simulation (MCS) to obtain the statistical characteristics of the pipeline structural response. The failure mechanisms of the pipeline in the random soil with different fluctuation scales were investigated, and a parametric study was performed to identify the influential factors. Finally, the failure probability curves and surfaces were presented, providing clues for the pipeline safety design. The results revealed that in general, more than 50 % of the realized NSRF scenarios in the random analysis yielded more severe dent damage than the deterministic result, indicating that the latter would underestimate the damage degree, which was more pronounced when the increasing gradient of soil strength was high. The horizontal fluctuation scale had a remarkable influence on the pipeline damage behaviours and the corresponding statistical characteristics, of which the inner mechanisms were discussed. From the probabilistic perspective, at most an extra failure probability of 75 % would be suffered if the soil variability was ignored.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Structures
Marine Structures 工程技术-工程:海洋
CiteScore
8.70
自引率
7.70%
发文量
157
审稿时长
6.4 months
期刊介绍: This journal aims to provide a medium for presentation and discussion of the latest developments in research, design, fabrication and in-service experience relating to marine structures, i.e., all structures of steel, concrete, light alloy or composite construction having an interface with the sea, including ships, fixed and mobile offshore platforms, submarine and submersibles, pipelines, subsea systems for shallow and deep ocean operations and coastal structures such as piers.
期刊最新文献
Multiple-arc cylinder under flow: Vortex-induced vibration and energy harvesting Analysis of tubular joints in marine structures: A comprehensive review A study on the mechanical behavior of umbilical cables under impact loads using experimental and numerical methods Numerical and experimental investigation on active hydraulic tensioner system for a TLP under tether fails condition Assessment of internal defects in flush ground butt welds in marine structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1