光伏文献综述(第186期)

IF 8 2区 材料科学 Q1 ENERGY & FUELS Progress in Photovoltaics Pub Date : 2023-11-21 DOI:10.1002/pip.3748
Ziv Hameiri
{"title":"光伏文献综述(第186期)","authors":"Ziv Hameiri","doi":"10.1002/pip.3748","DOIUrl":null,"url":null,"abstract":"<p>In order to help readers stay up-to-date in the field, each issue of <i>Progress in Photovoltaics</i> will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including <i>IEEE Journal of Photovoltaics</i>, <i>Solar Energy Materials and Solar Cells</i>, <i>Renewable Energy</i>, <i>Renewable and Sustainable Energy Reviews</i>, <i>Journal of Applied Physics</i>, and <i>Applied Physics Letters</i>. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at <span>[email protected]</span>.</p><p>Schmid M. <b>Revisiting the definition of solar cell generations.</b> <i>Advanced Optical Materials</i> 2023; 2300697.</p><p>Ruud CJ, Gordon JM, Giebink NC. <b>Microcell concentrating photovoltaics for space.</b> <i>Joule</i> 2023; <b>7</b>(6): 1093–1098.</p><p>van Sark W. <b>Photovoltaics performance monitoring is essential in a 100% renewables-based society.</b> <i>Joule</i> 2023; <b>7</b>(7): 1388–1393.</p><p>Kittner N. <b>Breaking down costs.</b> <i>Nature Energy</i> 2023; <b>8</b>(8): 779–780.</p><p>Klemun MM, Kavlak G, McNerney J, et al <b>Mechanisms of hardware and soft technology evolution and the implications for solar energy cost trends.</b> <i>Nature Energy</i> 2023; <b>8</b>(8): 827.</p><p>Holovsky J, Ridzonova K, Amalathas AP, et al <b>Below the Urbach edge: Solar cell loss analysis based on full external quantum efficiency spectra.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 3221–3227.</p><p>Belabbes F, Cotfas DT, Cotfas PA, et al <b>Using the snake optimization metaheuristic algorithms to extract the photovoltaic cells parameters.</b> <i>Energy Conversion and Management</i> 2023; <b>292</b>: 117373.</p><p>Otamendi U, Martinez I, Olaizola IG, et al <b>A scalable framework for annotating photovoltaic cell defects in electroluminescence images.</b> <i>IEEE Transactions on Industrial Informatics</i> 2023; <b>19</b>(9): 9361–9369.</p><p>Vukovic M, Hillestad M, Jakovljevic M, et al <b>Photoluminescence imaging of field-installed photovoltaic modules in diffuse irradiance.</b> <i>Journal of Applied Physics</i> 2023; <b>134</b>(7): 074903.</p><p>Vukovic M, Liland KH, Indahl UG, et al <b>Extraction of photoluminescence with Pearson correlation coefficient from images of field-installed photovoltaic modules.</b> <i>Journal of Applied Physics</i> 2023; <b>133</b>(21): 214901.</p><p>Zhao YR, Descamps J, Al Bast NA, et al <b>All-optical electrochemiluminescence.</b> <i>Journal of the American Chemical Society</i> 2023; <b>145</b>(31): 17420–17426.</p><p>Abdullah-Vetter Z, Dwivedi P, Buratti Y, et al <b>Advanced analysis of internal quantum efficiency measurements using machine learning.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(8): 790–802.</p><p>Steiner M, Siefer G. <b>Translation of outdoor tandem PV module I–V measurements to a STC power rating.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(8): 862–869.</p><p>Weber J, Roessler T. <b>How to assess the electrical quality of solar cell interconnection in shingle solar modules.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(9): 949–959.</p><p>Xu W, Monokroussos C, Müllejans H, et al <b>Performance evaluation of procedures used to correct measured I-V characteristics of photovoltaic modules for temperature and irradiance.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(10): 981–998.</p><p>Chen J, Lou YH, Wang ZK. <b>Characterizing spatial and energetic distributions of trap states toward highly efficient perovskite photovoltaics.</b> <i>Small</i> 2023; 2305064.</p><p>Krisztián D, Korsós F, Havasi G. <b>Simultaneous measurement of charge carrier concentration, mobility, and lifetime.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112461.</p><p>Sen C, Wu X, Wang H, et al <b>Accelerated damp-heat testing at the cell-level of bifacial silicon HJT, PERC and TOPCon solar cells using sodium chloride.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112554.</p><p>Turek M, Meusel M. <b>Automated classification of electroluminescence images using artificial neural networks in correlation to solar cell performance parameters.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112483.</p><p>Xu ZY, Liu XN, Zhou JK, et al <b>Aluminum and molybdenum Co-doped zinc oxide films as dual-functional carrier-selective contact for silicon solar cells.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(29): 34964–34972.</p><p>Urdiroz U, Itoiz I, Sevilla J, et al <b>Combining radiative cooling and light trapping strategies for improved performance of PERC bifacial silicon solar cells.</b> <i>Energy Reports</i> 2023; <b>10</b>: 1116–1125.</p><p>Getz MN, Povoli M, Koybasi O, et al <b>Gamma-radiation hardness and long-term stability of ALD-Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>surface passivated Si.</b> <i>Journal of Applied Physics</i> 2023; <b>133</b>(15): 154501.</p><p>Masuch P, Reichel C, Bonilla RS, et al <b>Bias-voltage photoconductance and photoluminescence for the determination of silicon-dielectric interface properties in SiO</b><sub><b>2</b></sub><b>/Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>stacks.</b> <i>Journal of Applied Physics</i> 2023; <b>134</b>(7): 075705.</p><p>Liu XN, Zhou JK, Ding Y, et al <b>Atomic-layer-deposited H:MoO</b><sub><b>x</b></sub> <b>function layer as efficient hole selective passivating contact in silicon solar cells.</b> <i>Materials Today Energy</i> 2023; <b>36</b>: 101362.</p><p>Wang YH, Gu ZY, Li L, et al <b>Interfacial engineering of ZnS passivating contacts for crystalline silicon solar cells achieving 20% efficiency.</b> <i>Materials Today Energy</i> 2023; <b>35</b>: 101336.</p><p>Chu FH, Qu XL, He YC, et al <b>Prediction of sub-pyramid texturing as the next step towards high efficiency silicon heterojunction solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 3596.</p><p>Bektaş G, Seyrek S, Keçeci AE, et al <b>A comparative study on alternative industrial manufacturing routes for bifacial n-PERT silicon solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(10): 1016–1022.</p><p>Li X, Yang Y, Jiang K, et al <b>Potential-free sodium-induced degradation of silicon heterojunction solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(9): 939–948.</p><p>Akgayev B, Sezgin A, Yilmaz M, et al <b>Screen printable fire through nickel contacts for silicon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>261</b>: 112528.</p><p>Cheng D, Gao Y. <b>Effect of the diamond saw wires capillary adhesion on the thickness variation of ultra-thin photovoltaic silicon wafers during slicing.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>261</b>: 112525.</p><p>Ding D, Du D, Quan C, et al <b>Application of dual-layer polysilicon deposited by PECVD in n-type TOPCon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>261</b>: 112519.</p><p>Du M, Jia R, Li X, et al <b>Theoretical analysis of backside polycrystalline silicon layer in the TOPCon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112555.</p><p>Gageot T, Veirman J, Jay F, et al <b>Feasibility test of drastic indium cut down in SHJ solar cells and modules using ultra-thin ITO layers.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>261</b>: 112512.</p><p>Garland BM, Davis BE, Strandwitz NC. <b>Investigating the effect of aluminum oxide fixed charge on Schottky barrier height in molybdenum oxide-based selective contacts.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112537.</p><p>Guo C, Jia R, Tian X, et al <b>Study on the influence of micro-alkali texturing and micro-alkali polishing process on the passivation and contact performance of n-TOPCon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112476.</p><p>Hu Z, Cong M, Zhang X, et al <b>Effect of metal impurities concentration on electrical properties in n-type recharged-Czochralski silicon.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112482.</p><p>Huang X, Zhou Y, Guo W, et al <b>Zr-doped indium oxide films for silicon heterojunction solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112480.</p><p>Maischner F, Greulich JM, Kwapil W, et al <b>LeTID mitigation via an adapted firing process in p-type PERC cells from gallium-doped Czochralski silicon.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112529.</p><p>Maischner F, Kwapil W, Greulich JM, et al <b>Process influences on LeTID in Ga-doped silicon.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112451.</p><p>Simon J, Fischer-Süßlin R, Zerfaß R, et al <b>Correlation study between LeTID defect density, hydrogen and firing profile in Ga-doped crystalline silicon.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112456.</p><p>Wang X, Gao K, Xu D, et al <b>Atomic-layer-deposited BO</b><sub><b>x</b></sub><b>/Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>stack for crystalline silicon surface passivation.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112481.</p><p>Yu J, Chen Y, He J, et al <b>Enhancing poly-Si contact through a highly conductive and ultra-thin TiN layer for high-efficiency passivating contact silicon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112491.</p><p>Choi YJ, Lim SY, Park JH, et al <b>Atomic layer deposition-free monolithic perovskite/perovskite/silicon triple-junction solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 3141–3146.</p><p>Bai YM, Han F, Zeng R, et al <b>Synergy of the transmittance fluctuation factor and absorption selectivity for efficient semitransparent perovskite/organic tandem solar cells with high color-fidelity.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(33): 17514–17524.</p><p>Harter A, Mariotti S, Korte L, et al <b>Double-sided nano-textured surfaces for industry compatible high-performance silicon heterojunction and perovskite/silicon tandem solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(8): 813–823.</p><p>Peters IM, Rodríguez Gallegos CD, Lüer L, et al <b>Practical limits of multijunction solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(10): 1006–1015.</p><p>Singh M, Datta K, Amarnath A, et al <b>Crystalline silicon solar cells with thin poly-SiO</b><sub><b>x</b></sub> <b>carrier-selective passivating contacts for perovskite/c-Si tandem applications.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(9): 877–887.</p><p>Wang G, Yue Z, Huang Z, et al <b>High-performance perovskite/silicon heterojunction solar cells enabled by industrially compatible postannealing.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(9): 921–930.</p><p>Chin XY, Turkay D, Steele JA, et al <b>Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells.</b> <i>Science</i> 2023; <b>381</b>(6653): 59–62.</p><p>De Wolf S, Aydin E. <b>Tandems have the power perovskite-silicon tandem solar cells b reak the 30% efficiency threshold.</b> <i>Science</i> 2023; <b>381</b>(6653): 30–31.</p><p>Mariotti S, Kohnen E, Scheler F, et al <b>Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells.</b> <i>Science</i> 2023; <b>381</b>(6653): 63–69.</p><p>De Rose A, Erath D, Nikitina V, et al <b>Low-temperature metallization &amp; interconnection for silicon heterojunction and perovskite silicon tandem solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>261</b>: 112515.</p><p>Li Y, Wang X, Xu Q, et al <b>Nanocrystalline silicon-oxygen based tunneling recombination junctions in perovskite/silicon heterojunction tandem solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112539.</p><p>Cao XJ, Guo JX, Li ZX, et al <b>A broad-spectrum solid additive to further boost high-efficiency organic solar cells via morphology regulation.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(8): 3494–3503.</p><p>Muller JS, Comi M, Eisner F, et al <b>Charge-transfer state dissociation efficiency can limit free charge generation in low-offset organic solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(8): 3387–3397.</p><p>Panidi J, Mazzolini E, Eisner F, et al <b>Biorenewable solvents for high-performance organic solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 3038–3047.</p><p>Li DH, Wang L, Guo CH, et al <b>Co-crystallization of fibrillar polymer donors for efficient ternary organic solar cells.</b> <i>Acs Materials Letters</i> 2023; <b>5</b>(8): 2065–2073.</p><p>Zhang HR, Ran GL, Cui XY, et al <b>Mitigating exciton recombination losses in organic solar cells by engineering nonfullerene molecular crystallization behavior.</b> <i>Advanced Energy Materials</i> 2023; 2302063.</p><p>Song W, Ye QR, Yang SC, et al <b>Ultra robust and highly efficient flexible organic solar cells with over 18% efficiency realized by incorporating a linker dimerized acceptor.</b> <i>Angewandte Chemie-International Edition</i> 2023; <b>62</b>(41): e202310034.</p><p>Jeon SJ, Kim YC, Kim JY, et al <b>Molecular design of cost-effective donor polymers with high visible transmission for eco-friendly and efficient semitransparent organic solar cells.</b> <i>Chemical Engineering Journal</i> 2023; <b>472</b>: 144850.</p><p>Song X, Xu H, Jiang XY, et al <b>Film-formation dynamics coordinated by intermediate state engineering enables efficient thickness-insensitive organic solar cells.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(8): 3441–3452.</p><p>Zhang KN, Jiang ZA, Qiao JW, et al <b>Dredging photocarrier trapping pathways via “charge bridge” driven exciton-phonon decoupling enables efficient and photothermal stable quaternary organic solar cells.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(8): 3350–3362.</p><p>Mondelli P, Kaienburg P, Silvestri F, et al <b>Understanding the role of non-fullerene acceptor crystallinity in the charge transport properties and performance of organic solar cells.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(30): 16263–16278.</p><p>Bai Y, Zhang Z, Zhou QJ, et al <b>Geometry design of tethered small-molecule acceptor enables highly stable and efficient polymer solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 2926.</p><p>Liang HZ, Bi XQ, Chen HB, et al <b>A rare case of brominated small molecule acceptors for high-efficiency organic solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 4707.</p><p>Paleti SHK, Hultmark S, Han JH, et al <b>Hexanary blends: A strategy towards thermally stable organic photovoltaics.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 4608.</p><p>Zeng R, Zhu L, Zhang M, et al <b>All-polymer organic solar cells with nano-to-micron hierarchical morphology and large light receiving angle.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 4148.</p><p>Sung Y-M, Tsao C-S, Cha H-C, et al <b>High transparency and performance slot-die-coated large-area polymer solar module.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(8): 803–812.</p><p>Feroze S, Distler A, Forberich K, et al <b>Comparative analysis of outdoor energy harvest of organic and silicon solar modules for applications in BIPV systems.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111894.</p><p>Tang YH, Tan WL, Fei ZP, et al <b>Different energetics at donor:acceptor interfaces in bilayer and bulk-heterojunction polymer:non-fullerene organic solar cells.</b> <i>Solar RRL</i> 2023; 2300471.</p><p>Loague Q, Keller ND, Muller A, et al <b>Impact of molecular orientation on lateral and interfacial electron transfer at oxide interfaces.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(28): 34249–34262.</p><p>Castillo-Rodriguez J, Ortiz PD, Mahmood R, et al <b>The development of Au-titania photoanode composites toward semiflexible dye-sensitized solar cells.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111955.</p><p>Ghosh S, Pariari D, Behera T, et al <b>Buried interface passivation of perovskite solar cells by atomic layer deposition of Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub>. <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 3112–3,113.</p><p>Kitamura T, Wang L, Zhang Z, et al <b>Sn perovskite solar cells with tin oxide nanoparticle layer as hole transport layer.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(8): 3565–3568.</p><p>Baumeler T, Saleh AA, Wani TA, et al <b>Champion device architectures for low-cost and stable single-junction perovskite solar cells.</b> <i>Acs Materials Letters</i> 2023; <b>5</b>(9): 2408–2421.</p><p>Zhou YH, Yan DD, Zhang H, et al <b>Ionic liquid-mediated intermediate phase adduct constructing for highly stable lead-free perovskite solar cells.</b> <i>Acs Materials Letters</i> 2023; <b>5</b>(8): 2096–2103.</p><p>Yue T, Li K, Li X, et al <b>A binary solution strategy enables high-efficiency quasi-2D perovskite solar cells with excellent thermal stability.</b> <i>Acs Nano</i> 2023; <b>17</b>(15): 14632–14643.</p><p>Wu ZF, Jiang MW, Liu ZH, et al <b>Highly efficient perovskite solar cells enabled by multiple ligand passivation.</b> <i>Advanced Energy Materials</i> 2023; <b>13</b>(27): 1903696.</p><p>Ulatowski AM, Elmestekawy KA, Patel JB, et al <b>Contrasting charge-carrier dynamics across key metal-halide perovskite compositions through in situ simultaneous probes.</b> <i>Advanced Functional Materials</i> 2023; 2305283.</p><p>Kim JH, Oh CM, Hwang IW, et al <b>Efficient and stable quasi-2D Ruddlesden-Popper perovskite solar cells by tailoring crystal orientation and passivating surface defects.</b> <i>Advanced Materials</i> 2023; <b>35</b>(31): 2302143.</p><p>Rao H, Su Y, Liu GL, et al <b>Monodisperse adducts-induced homogeneous nucleation towards high-quality tin-based perovskite film.</b> <i>Angewandte Chemie-International Edition</i> 2023; <b>62</b>(33): e202306712.</p><p>Ning L, Zha LY, Duan RZ, et al <b>Fabrication of perovskite solar cells with PCE of 21.84% in open air by bottom-up defect passivation and stress releasement.</b> <i>Chemical Engineering Journal</i> 2023; <b>471</b>: 144279.</p><p>Zhou CC, Wang T, Xu JQ, et al <b>Regulating molecular stacking to construct a superior interfacial contact for highly efficient and stable perovskite solar cells.</b> <i>Chemical Engineering Journal</i> 2023; <b>472</b>: 144975.</p><p>Jiang Q, Song ZN, Bramante RC, et al <b>Highly efficient bifacial single-junction perovskite solar cells.</b> <i>Joule</i> 2023; <b>7</b>(7): 1543–1555.</p><p>Liu K, Rafique S, Musolino SF, et al <b>Covalent bonding strategy to enable non-volatile organic cation perovskite for highly stable and efficient solar cells.</b> <i>Joule</i> 2023; <b>7</b>(5): 1033–1050.</p><p>Kim D, Yun JS, Sagotra A, et al <b>Charge carrier transport properties of twin domains in halide perovskites.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(31): 16743–16754.</p><p>Yang Y, Chang Q, Yang YY, et al <b>Multifunctional molecule interface modification for high-performance inverted wide-bandgap perovskite cells and modules.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(31): 16871–16877.</p><p>Pariari D, Mehta S, Mandal S, et al <b>Realizing the lowest bandgap and exciton binding energy in a two-dimensional lead halide system.</b> <i>Journal of the American Chemical Society</i> 2023; <b>145</b>(29): 15896–15905.</p><p>Chen J, Lou YH, Wang KL, et al <b>Front electric-field enabling highly efficient perovskite photovoltaics.</b> <i>Nano Energy</i> 2023; <b>115</b>: 108692.</p><p>Chen RH, Yang Y, Dai ZY, et al <b>Patch-healed grain boundary strategy to stabilize perovskite films for high-performance solar modules.</b> <i>Nano Energy</i> 2023; <b>115</b>: 108759.</p><p>Li XG, Xie FM, Rafique S, et al <b>Spectral response regulation strategy by downshifting materials to improve efficiency of flexible perovskite solar cells.</b> <i>Nano Energy</i> 2023; <b>114</b>: 108619.</p><p>Wu ZF, Bi EB, Ono LK, et al <b>Passivation strategies for enhancing device performance of perovskite solar cells.</b> <i>Nano Energy</i> 2023; <b>115</b>: 108731.</p><p>Song ZL, Yang J, Dong XY, et al <b>Inverted wide-bandgap 2D/3D perovskite solar cells with &gt;22% efficiency and low voltage loss.</b> <i>Nano Letters</i> 2023; <b>23</b>(14): 6705–6712.</p><p>Fehr AMK, Agrawal A, Mandani F, et al <b>Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 3797.</p><p>Hartono NTP, Kobler H, Graniero P, et al <b>Stability follows efficiency based on the analysis of a large perovskite solar cells ageing dataset.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 4869.</p><p>Huang ZQ, Li L, Wu TQ, et al <b>Wearable perovskite solar cells by aligned liquid crystal elastomers.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1204.</p><p>Qin W, Ali W, Wang JF, et al <b>Suppressing non-radiative recombination in metal halide perovskite solar cells by synergistic effect of ferroelasticity.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 256.</p><p>Simbula A, Wu LY, Pitzalis F, et al <b>Exciton dissociation in 2D layered metal-halide perovskites.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 4125.</p><p>Zhang H, Pfeifer L, Zakeeruddin SM, et al <b>Tailoring passivators for highly efficient and stable perovskite solar cells.</b> <i>Nature Reviews Chemistry</i> 2023; <b>7</b>(9): 632–652.</p><p>Fei CB, Li NX, Wang MR, et al <b>Lead-chelating hole-transport layers for efficient and stable perovskite minimodules.</b> <i>Science</i> 2023; <b>380</b>(6647): 823–829.</p><p>Li WJ, Li WM, Chen G, et al <b>Tuning band alignment at grain boundaries for efficiency enhancement in Cu</b><sub><b>2</b></sub><b>ZnSnS</b><sub><b>4</b></sub> <b>solar cells.</b> <i>Acs Nano</i> 2023; <b>17</b>(16): 15742–15750.</p><p>Guo JJ, Ao JP, Zhang Y. <b>A critical review on rational composition engineering in kesterite photovoltaic devices: self-regulation and mutual synergy.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(31): 16494–16518.</p><p>Gutzler R, Witte W, Kanevce A, et al <b>V</b><sub><b>OC</b></sub><b>-losses across the band gap: Insights from a high-throughput inline process for CIGS solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(10): 1023–1031.</p><p>Villa S, Aninat R, Yilmaz P, et al <b>Insights into the moisture-induced degradation mechanisms on field-deployed CIGS modules.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(8): 824–839.</p><p>Amrillah T. <b>Enhancing the value of environment-friendly CZTS compound for next generation photovoltaic device: A review.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111982.</p><p>Siripurapu M, Meinardi F, Brovelli S, et al <b>Environmental effects on the performance of quantum dot luminescent solar concentrators.</b> <i>Acs Photonics</i> 2023; <b>10</b>(8): 2987–2993.</p><p>Briones E, Gutierrez A, Tapia-Contreras M, et al <b>Antireflective properties of Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub><b>/SiO</b><sub><b>2</b></sub> <b>multilayer stacks for GaAs solar cells.</b> <i>Applied Optics</i> 2023; <b>62</b>(22): 6007–6015.</p><p>Schlute KL, Johnston SW, Braun AK, et al <b>GaAs solar cells grown on acoustically spalled GaAs substrates with 27% efficiency.</b> <i>Joule</i> 2023; <b>7</b>(7): 1529–1542.</p><p>Lim C, Choi M, Kim T, et al <b>Effect of bandgap variation on photovoltaic properties of lead sulfide quantum dot solar cell.</b> <i>Materials Today Energy</i> 2023; <b>36</b>: 101357.</p><p>Barbon A, Ayuso PF, Bayon L, et al <b>Experimental and numerical investigation of the influence of terrain slope on the of-axis trackers.</b> <i>Applied Energy</i> 2023; <b>348</b>: 121524.</p><p>Gilletly SD, Jackson ND, Staid A. <b>Evaluating the impact of wildfire smoke on solar photovoltaic production.</b> <i>Applied Energy</i> 2023; <b>348</b>: 121303.</p><p>Jiang H, Zhang XT, Yao L, et al <b>High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles.</b> <i>Applied Energy</i> 2023; <b>348</b>: 121553.</p><p>Ledmaoui Y, El Maghraoui A, El Aroussi M, et al <b>Forecasting solar energy production: A comparative study of machine learning algorithms.</b> <i>Energy Reports</i> 2023; <b>10</b>: 1004–1012.</p><p>Zeddini MA, Krim S, Mimouni MF. <b>Experimental validation of an advanced metaheuristic algorithm for maximum power point tracking of a shaded photovoltaic system: A comparative study between three approaches.</b> <i>Energy Reports</i> 2023; <b>10</b>: 161–185.</p><p>Martinez-Comesana M, Martinez-Torres J, Eguiia-Oller P. <b>Optimisation of LSTM neural networks with NSGA-II and FDA for PV installations characterisation.</b> <i>Engineering Applications of Artificial Intelligence</i> 2023; <b>126</b>: 106770.</p><p>Espinoza-Trejo DR, Castro LM, Barcenas E, et al <b>Data-driven switch fault diagnosis for DC/DC boost converters in photovoltaic applications.</b> <i>IEEE Transactions on Industrial Electronics</i> 2024; <b>71</b>(2): 1631–1640.</p><p>Callegaro L, Taghizadeh F, Deilami S, et al <b>A simple technique linearizing and decoupling DC-link voltage control from source nonlinearity in single-stage photovoltaic inverters.</b> <i>IEEE Transactions on Power Electronics</i> 2023; <b>38</b>(9): 11652–11663.</p><p>Chen XY, Xu X, Wang J, et al <b>Robust proactive power smoothing control of PV systems based on deep reinforcement learning.</b> <i>IEEE Transactions on Sustainable Energy</i> 2023; <b>14</b>(3): 1585–1598.</p><p>Mohammed KK, Mekhilef S, Buyamin S. <b>Improved rat swarm optimizer algorithm-based MPPT under partially shaded conditions and load variation for PV systems.</b> <i>IEEE Transactions on Sustainable Energy</i> 2023; <b>14</b>(3): 1385–1396.</p><p>Kim Y, Kim S, Kim S. <b>An integrated agent-based simulation modeling framework for sustainable production of an agrophotovoltaic system.</b> <i>Journal of Cleaner Production</i> 2023; <b>420</b>: 138307.</p><p>Daher DH, Aghaei M, Quansah DA, et al <b>Multi-pronged degradation analysis of a photovoltaic power plant after 9.5 years of operation under hot desert climatic conditions.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(9): 888–907.</p><p>Murugesan P, Winston David P, Murugesan P, et al <b>One-step adaptive reconfiguration technique for partial shaded photovoltaic array.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111949.</p><p>Poulek V, Tyukhov I, Beranek V. <b>On site renovation of degraded PV panels – Cost and environmental effective technology.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111956.</p><p>Brune B, Ortner I, Eder GC, et al <b>Connecting material degradation and power loss of PV modules using advanced statistical methodology.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112485.</p><p>Johnston SW, Jordan DC, Kern DB, et al <b>Degradation-related defect level in weathered silicon heterojunction modules characterized by deep level transient spectroscopy.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112527.</p><p>Yang Y, Li L, Xu D, et al <b>Effect of ultraviolet aging of backsheet on electrical performance of silicon photovoltaic module.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112558.</p><p>Bampoulas A, Pallonetto F, Mangina E, et al <b>A Bayesian deep-learning framework for assessing the energy flexibility of residential buildings with multicomponent energy systems.</b> <i>Applied Energy</i> 2023; <b>348</b>: 121576.</p><p>Cuenca JJ, Daly HE, Hayes BP. <b>Sharing the grid: The key to equitable access for small-scale energy generation.</b> <i>Applied Energy</i> 2023; <b>349</b>: 21641.</p><p>Adefarati T, Bansal RC, Shongwe T, et al <b>Optimal energy management, technical, economic, social, political and environmental benefit analysis of a grid-connected PV/WT/FC hybrid energy system.</b> <i>Energy Conversion and Management</i> 2023; <b>292</b>: 117390.</p><p>Prol JL, Steininger KW, Williges K, et al <b>Potential gains of long-distance trade in electricity.</b> <i>Energy Economics</i> 2023; <b>124</b>: 106739.</p><p>Niu JY, Wu JY, Qin WM, et al <b>Projection of future carbon benefits by photovoltaic power potential in China using CMIP6 statistical downscaling data.</b> <i>Environmental Research Letters</i> 2023; <b>18</b>(9): 094013.</p><p>Dogan E, Luni T, Majeed MT, et al <b>The nexus between global carbon and renewable energy sources: A step towards sustainability.</b> <i>Journal of Cleaner Production</i> 2023; <b>416</b>: 137927.</p><p>Wang YJ, Wang R, Tanaka K, et al <b>Accelerating the energy transition towards photovoltaic and wind in China.</b> <i>Nature</i> 2023; <b>619</b>(7971): 761.</p><p>Besseau R, Tannous S, Douziech M, et al <b>An open-source parameterized life cycle model to assess the environmental performance of silicon-based photovoltaic systems.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(9): 908–920.</p><p>Shao JL, Li J, Yao XL. <b>Net benefits change of waste photovoltaic recycling in China: Projection of waste based on multiple factors.</b> <i>Journal of Cleaner Production</i> 2023; <b>417</b>: 137984.</p><p>Suyanto ER, Sofi M, Lumantarna E, et al <b>Comparison of waste photovoltaic panel processing alternatives in Australia.</b> <i>Journal of Cleaner Production</i> 2023; <b>418</b>: 138128.</p><p>Brenes GH, Riech I, Giácoman-Vallejos G, et al <b>Chemical method for ethyl vinyl acetate removal in crystalline silicon photovoltaic modules.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111778.</p><p>Yu Y, Li S, Xi F, et al <b>Influence of the structural differences between end-of-life Al-BSF and PERC modules on the Al leaching separation behavior.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111938.</p><p>Feng Y, He Y, Zhang G, et al <b>A promising method for the liberation and separation of solar cells from damaged crystalline silicon photovoltaic modules.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112553.</p><p>Sah D, Chitra, Upadhyay NK, et al <b>Growth and analysis of polycrystalline silicon ingots using recycled silicon from waste solar module.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>261</b>: 112524.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"31 12","pages":"1503-1508"},"PeriodicalIF":8.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3748","citationCount":"0","resultStr":"{\"title\":\"Photovoltaics literature survey (No. 186)\",\"authors\":\"Ziv Hameiri\",\"doi\":\"10.1002/pip.3748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to help readers stay up-to-date in the field, each issue of <i>Progress in Photovoltaics</i> will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including <i>IEEE Journal of Photovoltaics</i>, <i>Solar Energy Materials and Solar Cells</i>, <i>Renewable Energy</i>, <i>Renewable and Sustainable Energy Reviews</i>, <i>Journal of Applied Physics</i>, and <i>Applied Physics Letters</i>. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at <span>[email protected]</span>.</p><p>Schmid M. <b>Revisiting the definition of solar cell generations.</b> <i>Advanced Optical Materials</i> 2023; 2300697.</p><p>Ruud CJ, Gordon JM, Giebink NC. <b>Microcell concentrating photovoltaics for space.</b> <i>Joule</i> 2023; <b>7</b>(6): 1093–1098.</p><p>van Sark W. <b>Photovoltaics performance monitoring is essential in a 100% renewables-based society.</b> <i>Joule</i> 2023; <b>7</b>(7): 1388–1393.</p><p>Kittner N. <b>Breaking down costs.</b> <i>Nature Energy</i> 2023; <b>8</b>(8): 779–780.</p><p>Klemun MM, Kavlak G, McNerney J, et al <b>Mechanisms of hardware and soft technology evolution and the implications for solar energy cost trends.</b> <i>Nature Energy</i> 2023; <b>8</b>(8): 827.</p><p>Holovsky J, Ridzonova K, Amalathas AP, et al <b>Below the Urbach edge: Solar cell loss analysis based on full external quantum efficiency spectra.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 3221–3227.</p><p>Belabbes F, Cotfas DT, Cotfas PA, et al <b>Using the snake optimization metaheuristic algorithms to extract the photovoltaic cells parameters.</b> <i>Energy Conversion and Management</i> 2023; <b>292</b>: 117373.</p><p>Otamendi U, Martinez I, Olaizola IG, et al <b>A scalable framework for annotating photovoltaic cell defects in electroluminescence images.</b> <i>IEEE Transactions on Industrial Informatics</i> 2023; <b>19</b>(9): 9361–9369.</p><p>Vukovic M, Hillestad M, Jakovljevic M, et al <b>Photoluminescence imaging of field-installed photovoltaic modules in diffuse irradiance.</b> <i>Journal of Applied Physics</i> 2023; <b>134</b>(7): 074903.</p><p>Vukovic M, Liland KH, Indahl UG, et al <b>Extraction of photoluminescence with Pearson correlation coefficient from images of field-installed photovoltaic modules.</b> <i>Journal of Applied Physics</i> 2023; <b>133</b>(21): 214901.</p><p>Zhao YR, Descamps J, Al Bast NA, et al <b>All-optical electrochemiluminescence.</b> <i>Journal of the American Chemical Society</i> 2023; <b>145</b>(31): 17420–17426.</p><p>Abdullah-Vetter Z, Dwivedi P, Buratti Y, et al <b>Advanced analysis of internal quantum efficiency measurements using machine learning.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(8): 790–802.</p><p>Steiner M, Siefer G. <b>Translation of outdoor tandem PV module I–V measurements to a STC power rating.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(8): 862–869.</p><p>Weber J, Roessler T. <b>How to assess the electrical quality of solar cell interconnection in shingle solar modules.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(9): 949–959.</p><p>Xu W, Monokroussos C, Müllejans H, et al <b>Performance evaluation of procedures used to correct measured I-V characteristics of photovoltaic modules for temperature and irradiance.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(10): 981–998.</p><p>Chen J, Lou YH, Wang ZK. <b>Characterizing spatial and energetic distributions of trap states toward highly efficient perovskite photovoltaics.</b> <i>Small</i> 2023; 2305064.</p><p>Krisztián D, Korsós F, Havasi G. <b>Simultaneous measurement of charge carrier concentration, mobility, and lifetime.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112461.</p><p>Sen C, Wu X, Wang H, et al <b>Accelerated damp-heat testing at the cell-level of bifacial silicon HJT, PERC and TOPCon solar cells using sodium chloride.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112554.</p><p>Turek M, Meusel M. <b>Automated classification of electroluminescence images using artificial neural networks in correlation to solar cell performance parameters.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112483.</p><p>Xu ZY, Liu XN, Zhou JK, et al <b>Aluminum and molybdenum Co-doped zinc oxide films as dual-functional carrier-selective contact for silicon solar cells.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(29): 34964–34972.</p><p>Urdiroz U, Itoiz I, Sevilla J, et al <b>Combining radiative cooling and light trapping strategies for improved performance of PERC bifacial silicon solar cells.</b> <i>Energy Reports</i> 2023; <b>10</b>: 1116–1125.</p><p>Getz MN, Povoli M, Koybasi O, et al <b>Gamma-radiation hardness and long-term stability of ALD-Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>surface passivated Si.</b> <i>Journal of Applied Physics</i> 2023; <b>133</b>(15): 154501.</p><p>Masuch P, Reichel C, Bonilla RS, et al <b>Bias-voltage photoconductance and photoluminescence for the determination of silicon-dielectric interface properties in SiO</b><sub><b>2</b></sub><b>/Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>stacks.</b> <i>Journal of Applied Physics</i> 2023; <b>134</b>(7): 075705.</p><p>Liu XN, Zhou JK, Ding Y, et al <b>Atomic-layer-deposited H:MoO</b><sub><b>x</b></sub> <b>function layer as efficient hole selective passivating contact in silicon solar cells.</b> <i>Materials Today Energy</i> 2023; <b>36</b>: 101362.</p><p>Wang YH, Gu ZY, Li L, et al <b>Interfacial engineering of ZnS passivating contacts for crystalline silicon solar cells achieving 20% efficiency.</b> <i>Materials Today Energy</i> 2023; <b>35</b>: 101336.</p><p>Chu FH, Qu XL, He YC, et al <b>Prediction of sub-pyramid texturing as the next step towards high efficiency silicon heterojunction solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 3596.</p><p>Bektaş G, Seyrek S, Keçeci AE, et al <b>A comparative study on alternative industrial manufacturing routes for bifacial n-PERT silicon solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(10): 1016–1022.</p><p>Li X, Yang Y, Jiang K, et al <b>Potential-free sodium-induced degradation of silicon heterojunction solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(9): 939–948.</p><p>Akgayev B, Sezgin A, Yilmaz M, et al <b>Screen printable fire through nickel contacts for silicon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>261</b>: 112528.</p><p>Cheng D, Gao Y. <b>Effect of the diamond saw wires capillary adhesion on the thickness variation of ultra-thin photovoltaic silicon wafers during slicing.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>261</b>: 112525.</p><p>Ding D, Du D, Quan C, et al <b>Application of dual-layer polysilicon deposited by PECVD in n-type TOPCon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>261</b>: 112519.</p><p>Du M, Jia R, Li X, et al <b>Theoretical analysis of backside polycrystalline silicon layer in the TOPCon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112555.</p><p>Gageot T, Veirman J, Jay F, et al <b>Feasibility test of drastic indium cut down in SHJ solar cells and modules using ultra-thin ITO layers.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>261</b>: 112512.</p><p>Garland BM, Davis BE, Strandwitz NC. <b>Investigating the effect of aluminum oxide fixed charge on Schottky barrier height in molybdenum oxide-based selective contacts.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112537.</p><p>Guo C, Jia R, Tian X, et al <b>Study on the influence of micro-alkali texturing and micro-alkali polishing process on the passivation and contact performance of n-TOPCon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112476.</p><p>Hu Z, Cong M, Zhang X, et al <b>Effect of metal impurities concentration on electrical properties in n-type recharged-Czochralski silicon.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112482.</p><p>Huang X, Zhou Y, Guo W, et al <b>Zr-doped indium oxide films for silicon heterojunction solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112480.</p><p>Maischner F, Greulich JM, Kwapil W, et al <b>LeTID mitigation via an adapted firing process in p-type PERC cells from gallium-doped Czochralski silicon.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112529.</p><p>Maischner F, Kwapil W, Greulich JM, et al <b>Process influences on LeTID in Ga-doped silicon.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112451.</p><p>Simon J, Fischer-Süßlin R, Zerfaß R, et al <b>Correlation study between LeTID defect density, hydrogen and firing profile in Ga-doped crystalline silicon.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112456.</p><p>Wang X, Gao K, Xu D, et al <b>Atomic-layer-deposited BO</b><sub><b>x</b></sub><b>/Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>stack for crystalline silicon surface passivation.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112481.</p><p>Yu J, Chen Y, He J, et al <b>Enhancing poly-Si contact through a highly conductive and ultra-thin TiN layer for high-efficiency passivating contact silicon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112491.</p><p>Choi YJ, Lim SY, Park JH, et al <b>Atomic layer deposition-free monolithic perovskite/perovskite/silicon triple-junction solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 3141–3146.</p><p>Bai YM, Han F, Zeng R, et al <b>Synergy of the transmittance fluctuation factor and absorption selectivity for efficient semitransparent perovskite/organic tandem solar cells with high color-fidelity.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(33): 17514–17524.</p><p>Harter A, Mariotti S, Korte L, et al <b>Double-sided nano-textured surfaces for industry compatible high-performance silicon heterojunction and perovskite/silicon tandem solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(8): 813–823.</p><p>Peters IM, Rodríguez Gallegos CD, Lüer L, et al <b>Practical limits of multijunction solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(10): 1006–1015.</p><p>Singh M, Datta K, Amarnath A, et al <b>Crystalline silicon solar cells with thin poly-SiO</b><sub><b>x</b></sub> <b>carrier-selective passivating contacts for perovskite/c-Si tandem applications.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(9): 877–887.</p><p>Wang G, Yue Z, Huang Z, et al <b>High-performance perovskite/silicon heterojunction solar cells enabled by industrially compatible postannealing.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(9): 921–930.</p><p>Chin XY, Turkay D, Steele JA, et al <b>Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells.</b> <i>Science</i> 2023; <b>381</b>(6653): 59–62.</p><p>De Wolf S, Aydin E. <b>Tandems have the power perovskite-silicon tandem solar cells b reak the 30% efficiency threshold.</b> <i>Science</i> 2023; <b>381</b>(6653): 30–31.</p><p>Mariotti S, Kohnen E, Scheler F, et al <b>Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells.</b> <i>Science</i> 2023; <b>381</b>(6653): 63–69.</p><p>De Rose A, Erath D, Nikitina V, et al <b>Low-temperature metallization &amp; interconnection for silicon heterojunction and perovskite silicon tandem solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>261</b>: 112515.</p><p>Li Y, Wang X, Xu Q, et al <b>Nanocrystalline silicon-oxygen based tunneling recombination junctions in perovskite/silicon heterojunction tandem solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112539.</p><p>Cao XJ, Guo JX, Li ZX, et al <b>A broad-spectrum solid additive to further boost high-efficiency organic solar cells via morphology regulation.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(8): 3494–3503.</p><p>Muller JS, Comi M, Eisner F, et al <b>Charge-transfer state dissociation efficiency can limit free charge generation in low-offset organic solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(8): 3387–3397.</p><p>Panidi J, Mazzolini E, Eisner F, et al <b>Biorenewable solvents for high-performance organic solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 3038–3047.</p><p>Li DH, Wang L, Guo CH, et al <b>Co-crystallization of fibrillar polymer donors for efficient ternary organic solar cells.</b> <i>Acs Materials Letters</i> 2023; <b>5</b>(8): 2065–2073.</p><p>Zhang HR, Ran GL, Cui XY, et al <b>Mitigating exciton recombination losses in organic solar cells by engineering nonfullerene molecular crystallization behavior.</b> <i>Advanced Energy Materials</i> 2023; 2302063.</p><p>Song W, Ye QR, Yang SC, et al <b>Ultra robust and highly efficient flexible organic solar cells with over 18% efficiency realized by incorporating a linker dimerized acceptor.</b> <i>Angewandte Chemie-International Edition</i> 2023; <b>62</b>(41): e202310034.</p><p>Jeon SJ, Kim YC, Kim JY, et al <b>Molecular design of cost-effective donor polymers with high visible transmission for eco-friendly and efficient semitransparent organic solar cells.</b> <i>Chemical Engineering Journal</i> 2023; <b>472</b>: 144850.</p><p>Song X, Xu H, Jiang XY, et al <b>Film-formation dynamics coordinated by intermediate state engineering enables efficient thickness-insensitive organic solar cells.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(8): 3441–3452.</p><p>Zhang KN, Jiang ZA, Qiao JW, et al <b>Dredging photocarrier trapping pathways via “charge bridge” driven exciton-phonon decoupling enables efficient and photothermal stable quaternary organic solar cells.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(8): 3350–3362.</p><p>Mondelli P, Kaienburg P, Silvestri F, et al <b>Understanding the role of non-fullerene acceptor crystallinity in the charge transport properties and performance of organic solar cells.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(30): 16263–16278.</p><p>Bai Y, Zhang Z, Zhou QJ, et al <b>Geometry design of tethered small-molecule acceptor enables highly stable and efficient polymer solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 2926.</p><p>Liang HZ, Bi XQ, Chen HB, et al <b>A rare case of brominated small molecule acceptors for high-efficiency organic solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 4707.</p><p>Paleti SHK, Hultmark S, Han JH, et al <b>Hexanary blends: A strategy towards thermally stable organic photovoltaics.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 4608.</p><p>Zeng R, Zhu L, Zhang M, et al <b>All-polymer organic solar cells with nano-to-micron hierarchical morphology and large light receiving angle.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 4148.</p><p>Sung Y-M, Tsao C-S, Cha H-C, et al <b>High transparency and performance slot-die-coated large-area polymer solar module.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(8): 803–812.</p><p>Feroze S, Distler A, Forberich K, et al <b>Comparative analysis of outdoor energy harvest of organic and silicon solar modules for applications in BIPV systems.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111894.</p><p>Tang YH, Tan WL, Fei ZP, et al <b>Different energetics at donor:acceptor interfaces in bilayer and bulk-heterojunction polymer:non-fullerene organic solar cells.</b> <i>Solar RRL</i> 2023; 2300471.</p><p>Loague Q, Keller ND, Muller A, et al <b>Impact of molecular orientation on lateral and interfacial electron transfer at oxide interfaces.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(28): 34249–34262.</p><p>Castillo-Rodriguez J, Ortiz PD, Mahmood R, et al <b>The development of Au-titania photoanode composites toward semiflexible dye-sensitized solar cells.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111955.</p><p>Ghosh S, Pariari D, Behera T, et al <b>Buried interface passivation of perovskite solar cells by atomic layer deposition of Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub>. <i>Acs Energy Letters</i> 2023; <b>8</b>(7): 3112–3,113.</p><p>Kitamura T, Wang L, Zhang Z, et al <b>Sn perovskite solar cells with tin oxide nanoparticle layer as hole transport layer.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(8): 3565–3568.</p><p>Baumeler T, Saleh AA, Wani TA, et al <b>Champion device architectures for low-cost and stable single-junction perovskite solar cells.</b> <i>Acs Materials Letters</i> 2023; <b>5</b>(9): 2408–2421.</p><p>Zhou YH, Yan DD, Zhang H, et al <b>Ionic liquid-mediated intermediate phase adduct constructing for highly stable lead-free perovskite solar cells.</b> <i>Acs Materials Letters</i> 2023; <b>5</b>(8): 2096–2103.</p><p>Yue T, Li K, Li X, et al <b>A binary solution strategy enables high-efficiency quasi-2D perovskite solar cells with excellent thermal stability.</b> <i>Acs Nano</i> 2023; <b>17</b>(15): 14632–14643.</p><p>Wu ZF, Jiang MW, Liu ZH, et al <b>Highly efficient perovskite solar cells enabled by multiple ligand passivation.</b> <i>Advanced Energy Materials</i> 2023; <b>13</b>(27): 1903696.</p><p>Ulatowski AM, Elmestekawy KA, Patel JB, et al <b>Contrasting charge-carrier dynamics across key metal-halide perovskite compositions through in situ simultaneous probes.</b> <i>Advanced Functional Materials</i> 2023; 2305283.</p><p>Kim JH, Oh CM, Hwang IW, et al <b>Efficient and stable quasi-2D Ruddlesden-Popper perovskite solar cells by tailoring crystal orientation and passivating surface defects.</b> <i>Advanced Materials</i> 2023; <b>35</b>(31): 2302143.</p><p>Rao H, Su Y, Liu GL, et al <b>Monodisperse adducts-induced homogeneous nucleation towards high-quality tin-based perovskite film.</b> <i>Angewandte Chemie-International Edition</i> 2023; <b>62</b>(33): e202306712.</p><p>Ning L, Zha LY, Duan RZ, et al <b>Fabrication of perovskite solar cells with PCE of 21.84% in open air by bottom-up defect passivation and stress releasement.</b> <i>Chemical Engineering Journal</i> 2023; <b>471</b>: 144279.</p><p>Zhou CC, Wang T, Xu JQ, et al <b>Regulating molecular stacking to construct a superior interfacial contact for highly efficient and stable perovskite solar cells.</b> <i>Chemical Engineering Journal</i> 2023; <b>472</b>: 144975.</p><p>Jiang Q, Song ZN, Bramante RC, et al <b>Highly efficient bifacial single-junction perovskite solar cells.</b> <i>Joule</i> 2023; <b>7</b>(7): 1543–1555.</p><p>Liu K, Rafique S, Musolino SF, et al <b>Covalent bonding strategy to enable non-volatile organic cation perovskite for highly stable and efficient solar cells.</b> <i>Joule</i> 2023; <b>7</b>(5): 1033–1050.</p><p>Kim D, Yun JS, Sagotra A, et al <b>Charge carrier transport properties of twin domains in halide perovskites.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(31): 16743–16754.</p><p>Yang Y, Chang Q, Yang YY, et al <b>Multifunctional molecule interface modification for high-performance inverted wide-bandgap perovskite cells and modules.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(31): 16871–16877.</p><p>Pariari D, Mehta S, Mandal S, et al <b>Realizing the lowest bandgap and exciton binding energy in a two-dimensional lead halide system.</b> <i>Journal of the American Chemical Society</i> 2023; <b>145</b>(29): 15896–15905.</p><p>Chen J, Lou YH, Wang KL, et al <b>Front electric-field enabling highly efficient perovskite photovoltaics.</b> <i>Nano Energy</i> 2023; <b>115</b>: 108692.</p><p>Chen RH, Yang Y, Dai ZY, et al <b>Patch-healed grain boundary strategy to stabilize perovskite films for high-performance solar modules.</b> <i>Nano Energy</i> 2023; <b>115</b>: 108759.</p><p>Li XG, Xie FM, Rafique S, et al <b>Spectral response regulation strategy by downshifting materials to improve efficiency of flexible perovskite solar cells.</b> <i>Nano Energy</i> 2023; <b>114</b>: 108619.</p><p>Wu ZF, Bi EB, Ono LK, et al <b>Passivation strategies for enhancing device performance of perovskite solar cells.</b> <i>Nano Energy</i> 2023; <b>115</b>: 108731.</p><p>Song ZL, Yang J, Dong XY, et al <b>Inverted wide-bandgap 2D/3D perovskite solar cells with &gt;22% efficiency and low voltage loss.</b> <i>Nano Letters</i> 2023; <b>23</b>(14): 6705–6712.</p><p>Fehr AMK, Agrawal A, Mandani F, et al <b>Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 3797.</p><p>Hartono NTP, Kobler H, Graniero P, et al <b>Stability follows efficiency based on the analysis of a large perovskite solar cells ageing dataset.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 4869.</p><p>Huang ZQ, Li L, Wu TQ, et al <b>Wearable perovskite solar cells by aligned liquid crystal elastomers.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1204.</p><p>Qin W, Ali W, Wang JF, et al <b>Suppressing non-radiative recombination in metal halide perovskite solar cells by synergistic effect of ferroelasticity.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 256.</p><p>Simbula A, Wu LY, Pitzalis F, et al <b>Exciton dissociation in 2D layered metal-halide perovskites.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 4125.</p><p>Zhang H, Pfeifer L, Zakeeruddin SM, et al <b>Tailoring passivators for highly efficient and stable perovskite solar cells.</b> <i>Nature Reviews Chemistry</i> 2023; <b>7</b>(9): 632–652.</p><p>Fei CB, Li NX, Wang MR, et al <b>Lead-chelating hole-transport layers for efficient and stable perovskite minimodules.</b> <i>Science</i> 2023; <b>380</b>(6647): 823–829.</p><p>Li WJ, Li WM, Chen G, et al <b>Tuning band alignment at grain boundaries for efficiency enhancement in Cu</b><sub><b>2</b></sub><b>ZnSnS</b><sub><b>4</b></sub> <b>solar cells.</b> <i>Acs Nano</i> 2023; <b>17</b>(16): 15742–15750.</p><p>Guo JJ, Ao JP, Zhang Y. <b>A critical review on rational composition engineering in kesterite photovoltaic devices: self-regulation and mutual synergy.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(31): 16494–16518.</p><p>Gutzler R, Witte W, Kanevce A, et al <b>V</b><sub><b>OC</b></sub><b>-losses across the band gap: Insights from a high-throughput inline process for CIGS solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(10): 1023–1031.</p><p>Villa S, Aninat R, Yilmaz P, et al <b>Insights into the moisture-induced degradation mechanisms on field-deployed CIGS modules.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(8): 824–839.</p><p>Amrillah T. <b>Enhancing the value of environment-friendly CZTS compound for next generation photovoltaic device: A review.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111982.</p><p>Siripurapu M, Meinardi F, Brovelli S, et al <b>Environmental effects on the performance of quantum dot luminescent solar concentrators.</b> <i>Acs Photonics</i> 2023; <b>10</b>(8): 2987–2993.</p><p>Briones E, Gutierrez A, Tapia-Contreras M, et al <b>Antireflective properties of Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub><b>/SiO</b><sub><b>2</b></sub> <b>multilayer stacks for GaAs solar cells.</b> <i>Applied Optics</i> 2023; <b>62</b>(22): 6007–6015.</p><p>Schlute KL, Johnston SW, Braun AK, et al <b>GaAs solar cells grown on acoustically spalled GaAs substrates with 27% efficiency.</b> <i>Joule</i> 2023; <b>7</b>(7): 1529–1542.</p><p>Lim C, Choi M, Kim T, et al <b>Effect of bandgap variation on photovoltaic properties of lead sulfide quantum dot solar cell.</b> <i>Materials Today Energy</i> 2023; <b>36</b>: 101357.</p><p>Barbon A, Ayuso PF, Bayon L, et al <b>Experimental and numerical investigation of the influence of terrain slope on the of-axis trackers.</b> <i>Applied Energy</i> 2023; <b>348</b>: 121524.</p><p>Gilletly SD, Jackson ND, Staid A. <b>Evaluating the impact of wildfire smoke on solar photovoltaic production.</b> <i>Applied Energy</i> 2023; <b>348</b>: 121303.</p><p>Jiang H, Zhang XT, Yao L, et al <b>High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles.</b> <i>Applied Energy</i> 2023; <b>348</b>: 121553.</p><p>Ledmaoui Y, El Maghraoui A, El Aroussi M, et al <b>Forecasting solar energy production: A comparative study of machine learning algorithms.</b> <i>Energy Reports</i> 2023; <b>10</b>: 1004–1012.</p><p>Zeddini MA, Krim S, Mimouni MF. <b>Experimental validation of an advanced metaheuristic algorithm for maximum power point tracking of a shaded photovoltaic system: A comparative study between three approaches.</b> <i>Energy Reports</i> 2023; <b>10</b>: 161–185.</p><p>Martinez-Comesana M, Martinez-Torres J, Eguiia-Oller P. <b>Optimisation of LSTM neural networks with NSGA-II and FDA for PV installations characterisation.</b> <i>Engineering Applications of Artificial Intelligence</i> 2023; <b>126</b>: 106770.</p><p>Espinoza-Trejo DR, Castro LM, Barcenas E, et al <b>Data-driven switch fault diagnosis for DC/DC boost converters in photovoltaic applications.</b> <i>IEEE Transactions on Industrial Electronics</i> 2024; <b>71</b>(2): 1631–1640.</p><p>Callegaro L, Taghizadeh F, Deilami S, et al <b>A simple technique linearizing and decoupling DC-link voltage control from source nonlinearity in single-stage photovoltaic inverters.</b> <i>IEEE Transactions on Power Electronics</i> 2023; <b>38</b>(9): 11652–11663.</p><p>Chen XY, Xu X, Wang J, et al <b>Robust proactive power smoothing control of PV systems based on deep reinforcement learning.</b> <i>IEEE Transactions on Sustainable Energy</i> 2023; <b>14</b>(3): 1585–1598.</p><p>Mohammed KK, Mekhilef S, Buyamin S. <b>Improved rat swarm optimizer algorithm-based MPPT under partially shaded conditions and load variation for PV systems.</b> <i>IEEE Transactions on Sustainable Energy</i> 2023; <b>14</b>(3): 1385–1396.</p><p>Kim Y, Kim S, Kim S. <b>An integrated agent-based simulation modeling framework for sustainable production of an agrophotovoltaic system.</b> <i>Journal of Cleaner Production</i> 2023; <b>420</b>: 138307.</p><p>Daher DH, Aghaei M, Quansah DA, et al <b>Multi-pronged degradation analysis of a photovoltaic power plant after 9.5 years of operation under hot desert climatic conditions.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(9): 888–907.</p><p>Murugesan P, Winston David P, Murugesan P, et al <b>One-step adaptive reconfiguration technique for partial shaded photovoltaic array.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111949.</p><p>Poulek V, Tyukhov I, Beranek V. <b>On site renovation of degraded PV panels – Cost and environmental effective technology.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111956.</p><p>Brune B, Ortner I, Eder GC, et al <b>Connecting material degradation and power loss of PV modules using advanced statistical methodology.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>260</b>: 112485.</p><p>Johnston SW, Jordan DC, Kern DB, et al <b>Degradation-related defect level in weathered silicon heterojunction modules characterized by deep level transient spectroscopy.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112527.</p><p>Yang Y, Li L, Xu D, et al <b>Effect of ultraviolet aging of backsheet on electrical performance of silicon photovoltaic module.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112558.</p><p>Bampoulas A, Pallonetto F, Mangina E, et al <b>A Bayesian deep-learning framework for assessing the energy flexibility of residential buildings with multicomponent energy systems.</b> <i>Applied Energy</i> 2023; <b>348</b>: 121576.</p><p>Cuenca JJ, Daly HE, Hayes BP. <b>Sharing the grid: The key to equitable access for small-scale energy generation.</b> <i>Applied Energy</i> 2023; <b>349</b>: 21641.</p><p>Adefarati T, Bansal RC, Shongwe T, et al <b>Optimal energy management, technical, economic, social, political and environmental benefit analysis of a grid-connected PV/WT/FC hybrid energy system.</b> <i>Energy Conversion and Management</i> 2023; <b>292</b>: 117390.</p><p>Prol JL, Steininger KW, Williges K, et al <b>Potential gains of long-distance trade in electricity.</b> <i>Energy Economics</i> 2023; <b>124</b>: 106739.</p><p>Niu JY, Wu JY, Qin WM, et al <b>Projection of future carbon benefits by photovoltaic power potential in China using CMIP6 statistical downscaling data.</b> <i>Environmental Research Letters</i> 2023; <b>18</b>(9): 094013.</p><p>Dogan E, Luni T, Majeed MT, et al <b>The nexus between global carbon and renewable energy sources: A step towards sustainability.</b> <i>Journal of Cleaner Production</i> 2023; <b>416</b>: 137927.</p><p>Wang YJ, Wang R, Tanaka K, et al <b>Accelerating the energy transition towards photovoltaic and wind in China.</b> <i>Nature</i> 2023; <b>619</b>(7971): 761.</p><p>Besseau R, Tannous S, Douziech M, et al <b>An open-source parameterized life cycle model to assess the environmental performance of silicon-based photovoltaic systems.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(9): 908–920.</p><p>Shao JL, Li J, Yao XL. <b>Net benefits change of waste photovoltaic recycling in China: Projection of waste based on multiple factors.</b> <i>Journal of Cleaner Production</i> 2023; <b>417</b>: 137984.</p><p>Suyanto ER, Sofi M, Lumantarna E, et al <b>Comparison of waste photovoltaic panel processing alternatives in Australia.</b> <i>Journal of Cleaner Production</i> 2023; <b>418</b>: 138128.</p><p>Brenes GH, Riech I, Giácoman-Vallejos G, et al <b>Chemical method for ethyl vinyl acetate removal in crystalline silicon photovoltaic modules.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111778.</p><p>Yu Y, Li S, Xi F, et al <b>Influence of the structural differences between end-of-life Al-BSF and PERC modules on the Al leaching separation behavior.</b> <i>Solar Energy</i> 2023; <b>263</b>: 111938.</p><p>Feng Y, He Y, Zhang G, et al <b>A promising method for the liberation and separation of solar cells from damaged crystalline silicon photovoltaic modules.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>262</b>: 112553.</p><p>Sah D, Chitra, Upadhyay NK, et al <b>Growth and analysis of polycrystalline silicon ingots using recycled silicon from waste solar module.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>261</b>: 112524.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"31 12\",\"pages\":\"1503-1508\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3748\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3748\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3748","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为了帮助读者了解该领域的最新情况,每期的《光伏进展》都将包含与其目标和范围最相关的最近发表的期刊文章列表。这份名单来自范围极其广泛的期刊,包括IEEE光伏杂志、太阳能材料和太阳能电池、可再生能源、可再生和可持续能源评论、应用物理杂志和应用物理快报。为了帮助读者,我们将该列表分为几个大类,但请注意,这些分类并不严格。还要注意的是,被列入名单并不代表论文的质量得到认可。如果你有任何建议,请发邮件给Ziv Hameiri: [email protected]。重新审视太阳能电池世代的定义。先进光学材料2023;2300697.Ruud CJ, Gordon JM, Giebink NC。用于太空的微电池聚光光伏。焦耳2023;7(6): 1093 - 1098。光伏性能监测在100%以可再生能源为基础的社会中至关重要。焦耳2023;7(7): 1388 - 1393。分解成本。自然能源2023;8(8): 779 - 780。李建军,张建军,张建军,等。太阳能发电成本变化的软、硬件技术演化机制。自然能源2023;8(8): 827。Holovsky J, Ridzonova K, Amalathas AP,等。基于全外量子效率光谱的太阳能电池损耗分析。Acs Energy Letters 2023;8(7): 3221 - 3227。Belabbes F, Cotfas DT, Cotfas PA,等。采用蛇优化元启发式算法提取光伏电池参数。能源转换与管理2023;292: 117373。张建军,张建军,张建军,等。一种基于光电发光图像的光电电池缺陷标注方法。IEEE工业信息学报(英文版);19日(9):9361 - 9369。Vukovic M, Hillestad M, Jakovljevic M,等。漫射辐照下现场安装光伏组件的光致发光成像。应用物理学报(英文版);134(7): 074903。Vukovic M, Liland KH, Indahl UG,等。基于Pearson相关系数的光伏组件现场安装图像的光致发光提取。应用物理学报(英文版);133(21): 214901。赵玉林,Descamps J, Al Bast NA,等。美国化学学会杂志2023;145(31): 17420 - 17426。Abdullah-Vetter Z, Dwivedi P, Buratti Y,等。使用机器学习的内部量子效率测量的高级分析。光伏技术进展:研究与应用2023;31日(8):790 - 802。施泰纳M, Siefer G.室外串联光伏组件I-V测量转换为STC额定功率。光伏技术进展:研究与应用2023;31日(8):862 - 869。张建军,李建军。太阳能光伏组件互连电学质量评价方法研究。光伏技术进展:研究与应用2023;31日(9):949 - 959。徐伟,Monokroussos C, m<s:1> llejans H,等。基于温度和辐照度的光伏组件I-V特性校正程序的性能评估。光伏技术进展:研究与应用2023;31日(10):981 - 998。陈杰,娄永华,王志康。表征高效钙钛矿光伏阱态的空间和能量分布。小2023;2305064.Krisztián D, Korsós F, Havasi G.同时测量载流子浓度、迁移率和寿命。太阳能材料和太阳能电池2023;260: 112461。森超,吴鑫,王宏,等。基于氯化钠的HJT、PERC和TOPCon双硅太阳能电池的加速湿热测试。太阳能材料和太阳能电池2023;262: 112554。Turek M, Meusel M.基于人工神经网络的电致发光图像自动分类。太阳能材料和太阳能电池2023;260: 112483。徐志勇,刘晓楠,周建军,等。铝钼共掺杂氧化锌薄膜的双功能载流子选择触点研究。ac应用材料与接口2023;15(29): 34964 - 34972。吴建军,李建军,李建军,等。基于辐射冷却和光捕获的PERC双面硅太阳能电池性能研究。2023年能源报告;10: 1116 - 1125。Getz MN, Povoli M, Koybasi O,等。ALD-Al2O3表面钝化Si的γ辐射硬度和长期稳定性。应用物理学报(英文版);133(15): 154501。Masuch P, Reichel C, Bonilla RS,等。偏置电压光导和光致发光法测定SiO2/Al2O3叠层中硅-介电界面特性。应用物理学报(英文版);134(7): 075705。刘晓娜,周建军,丁勇,等。原子层沉积H:MoOx功能层在硅太阳能电池空穴选择性钝化接触中的应用。 材料今日能源2023;36: 101362。王艳华,顾志勇,李磊,等。晶体硅太阳能电池ZnS钝化触点的界面工程研究。材料今日能源2023;35: 101336。褚凤华,曲晓龙,何玉春,等。亚金字塔纹理化技术在高效硅异质结太阳能电池中的应用前景。自然通讯2023;14(1): 3596。张建军,张建军,张建军,等。双面n-PERT硅太阳能电池制备工艺的比较研究。光伏技术进展:研究与应用2023;31日(10):1016 - 1022。李鑫,杨勇,姜坤,等。硅异质结太阳能电池的无电位钠诱导降解。光伏技术进展:研究与应用2023;31日(9):939 - 948。李建军,李建军,李建军,等。硅太阳能电池的镍触点丝网印刷。太阳能材料和太阳能电池2023;261: 112528。程东,高艳。金刚石锯丝毛细粘附对超薄光伏硅片切片厚度变化的影响。太阳能材料和太阳能电池2023;261: 112525。丁东,杜东,全成,等。PECVD沉积双层多晶硅在n型TOPCon太阳能电池中的应用。太阳能材料和太阳能电池2023;261: 112519。杜敏,贾锐,李欣,等。TOPCon太阳能电池背面多晶硅层的理论分析。太阳能材料和太阳能电池2023;262: 112555。Gageot T, Veirman J, Jay F,等。超薄ITO层在SHJ太阳能电池和组件中大幅削减铟的可行性试验。太阳能材料和太阳能电池2023;261: 112512。Garland BM, Davis BE, Strandwitz NC。研究氧化铝固定电荷对钼基选择性触点肖特基势垒高度的影响。太阳能材料和太阳能电池2023;262: 112537。郭超,贾锐,田鑫,等。微碱织构和微碱抛光工艺对n-TOPCon太阳能电池钝化和接触性能的影响研究。太阳能材料和太阳能电池2023;260: 112476。胡忠,丛明,张欣,等。金属杂质浓度对n型再充放电奇克拉尔斯基硅电性能的影响。太阳能材料和太阳能电池2023;260: 112482。黄鑫,周勇,郭伟,等。硅异质结太阳能电池中zr掺杂氧化铟薄膜。太阳能材料和太阳能电池2023;260: 112480。Maischner F, Greulich JM, Kwapil W,等。掺镓Czochralski硅p型PERC电池的自适应烧成过程中LeTID的抑制。太阳能材料和太阳能电池2023;262: 112529。Maischner F, Kwapil W, Greulich JM,等。工艺对掺ga硅中LeTID的影响。太阳能材料和太阳能电池2023;260: 112451。Simon J, fischer - s<e:1> ßlin R, Zerfaß R,等。掺ga晶体硅LeTID缺陷密度、氢和烧成曲线的相关性研究。太阳能材料和太阳能电池2023;260: 112456。王鑫,高凯,徐东,等。原子层沉积BOx/Al2O3层在晶体硅表面钝化中的应用。太阳能材料和太阳能电池2023;260: 112481。于军,陈勇,何军,等。高导电超薄TiN层增强多晶硅接触的高效钝化接触硅太阳电池。太阳能材料和太阳能电池2023;260: 112491。崔玉军,林世祥,朴建辉,等。无原子层沉积的单片钙钛矿/钙钛矿/硅三结太阳能电池。Acs Energy Letters 2023;8(7): 3141 - 3146。白彦明,韩峰,曾锐,等。高保真度高效半透明钙钛矿/有机串联太阳能电池的透射率波动因子与吸收选择性的协同作用。材料工程学报(英文版);11(33): 17514 - 17524。Harter A, Mariotti S, Korte L,等。工业兼容高性能硅异质结和钙钛矿/硅串联太阳能电池的双面纳米纹理表面。光伏技术进展:研究与应用2023;31日(8):813 - 823。赵晓明,Rodríguez Gallegos CD, l<s:1> er L,等。多结太阳能电池的实用极限。光伏技术进展:研究与应用2023;31日(10):1006 - 1015。Singh M, Datta K, Amarnath A,等。钙钛矿/c-Si串联应用的薄聚siox载流子选择性钝化触点晶体硅太阳能电池。光伏技术进展:研究与应用2023;31日(9):877 - 887。王刚,岳震,黄震,等。基于工业兼容后镀的高性能钙钛矿/硅异质结太阳能电池。光伏技术进展:研究与应用2023;31日(9):921 - 930。陈晓东,陈晓东,陈晓东,等。31.25%高效钙钛矿/硅串联太阳能电池的界面钝化。科学2023;381(6653): 59 - 62。德·沃尔夫S,艾丁·E。 钙钛矿-硅串联太阳能电池的效率突破了30%的门槛。科学2023;381(6653): 30 - 31。马志强,陈志强,陈志强,等。高性能三卤化物钙钛矿硅串联太阳能电池的界面工程。科学2023;381(6653): 63 - 69。De Rose A, Erath D, Nikitina V,等。硅异质结和钙钛矿硅串联太阳能电池的互连。太阳能材料和太阳能电池2023;261: 112515。李勇,王鑫,徐强,等。钙钛矿/硅异质结串联太阳能电池中纳米晶硅-氧基隧道复合结。太阳能材料和太阳能电池2023;262: 112539。曹晓军,郭建新,李志新,等。一种广谱固体添加剂,通过形态调控进一步提升高效有机太阳能电池。Acs Energy Letters 2023;8(8): 3494 - 3503。Muller JS, Comi M, Eisner F,等。电荷转移态解离效率对低偏移有机太阳能电池自由电荷产生的影响。Acs Energy Letters 2023;8(8): 3387 - 3397。张建军,张建军,张建军,等。有机太阳能电池的制备及性能研究。Acs Energy Letters 2023;8(7): 3038 - 3047。李德华,王磊,郭超,等。纤维状聚合物供体共结晶制备高效三元有机太阳能电池。Acs材料快报2023;5(8): 2065 - 2073。张宏辉,冉国良,崔学勇,等。利用非富勒烯分子结晶行为减轻有机太阳能电池中激子重组损失。先进能源材料2023;2302063.宋伟,叶国强,杨春生,等。结合二聚体受体的超鲁棒高效柔性太阳能电池,其效率超过18%。Angewandte化学-国际版2023;62 (41): e202310034。田世杰,金玉春,金建勇,等。高效环保半透明有机太阳能电池中高可见光透射给体聚合物的分子设计。化学工程学报(英文版);472: 144850。宋鑫,徐辉,姜学祥,等。基于中间态工程的有机太阳能电池成膜动力学研究。能源与环境科学2023;16(8): 3441 - 3452。张建强,蒋泽,乔建伟,等。通过“电荷桥”驱动激子-声子去耦疏通光载流子捕获途径,实现高效、光热稳定的第四季有机太阳能电池。能源与环境科学2023;16(8): 3350 - 3362。Mondelli P, Kaienburg P, Silvestri F,等。非富勒烯受体结晶度对有机太阳能电池电荷传输特性和性能的影响。材料工程学报(英文版);11(30): 16263 - 16278。白燕,张志,周启军,等。系链小分子受体的几何设计实现了高稳定高效的聚合物太阳能电池。自然通讯2023;14(1): 2926。梁振华,毕晓青,陈海波,等。高效有机太阳能电池中罕见的溴化小分子受体。自然通讯2023;14(1): 4707。Paleti SHK, Hultmark S, Han JH,等。Hexanary共混物:热稳定有机光伏的策略。自然通讯2023;14(1): 4608。曾锐,朱磊,张敏,等。纳米至微米层次结构和大光接收角的全聚合物有机太阳能电池。自然通讯2023;14(1): 4148。宋永明,曹春生,查宏昌,等。高透明高性能槽模涂覆大面积聚合物太阳能组件。光伏技术进展:研究与应用2023;31日(8):803 - 812。ferroze S, Distler A, Forberich K,等。有机和硅太阳能组件在BIPV系统中应用的室外能量收集比较分析。太阳能2023;263: 111894。唐艳华,谭文伟,费志鹏,等。双层和块状异质结聚合物:非富勒烯有机太阳能电池供体-受体界面的不同能量学。Solar RRL 2023;2300471.张建军,张建军,张建军,等。分子取向对氧化界面电子转移的影响。ac应用材料与接口2023;15(28): 34249 - 34262。Castillo-Rodriguez J, Ortiz PD, Mahmood R,等。用于半柔性染料敏化太阳能电池的金钛光阳极复合材料的研究。太阳能2023;263: 111955。高晓东,王晓东,王晓东,等。Al2O3原子层沉积法制备钙钛矿太阳能电池的界面钝化研究。Acs Energy Letters 2023;8(7): 3112 - 3113。Kitamura T, Wang L, Zhang Z,等。以氧化锡纳米颗粒层作为空穴传输层的锡钙钛矿太阳能电池。Acs Energy Letters 2023;8(8): 3565 - 3568。Baumeler T, Saleh AA, Wani TA,等。低成本和稳定的单结钙钛矿太阳能电池的Champion器件架构。Acs材料快报2023;5(9): 2408 - 2421。 Villa S, animat R, Yilmaz P,等。现场部署的CIGS模块的水分诱导降解机制研究。光伏技术进展:研究与应用2023;31日(8):824 - 839。提高环境友好型CZTS化合物在下一代光伏器件中的应用价值。太阳能2023;263: 111982。M, Meinardi F, Brovelli S,等。环境对量子点发光太阳能聚光器性能的影响。Acs Photonics 2023;10(8): 2987 - 2993。刘建军,刘建军,刘建军,等。Al2O3/SiO2复合材料对砷化镓太阳能电池抗反射性能的影响。应用光学2023;62(22): 6007 - 6015。Schlute KL, Johnston SW, Braun AK,等人在声片状GaAs衬底上生长的效率为27%的GaAs太阳能电池。焦耳2023;7(7): 1529 - 1542。林超,崔敏,金涛,等。带隙变化对硫化铅量子点太阳能电池光电性能的影响。材料今日能源2023;36: 101357。Barbon A, Ayuso PF, Bayon L,等。地形坡度对轴向跟踪器影响的实验与数值研究。应用能源2023;348: 121524。李建军,李建军,李建军,等。野火烟雾对太阳能光伏发电的影响评价。应用能源2023;348: 121303。蒋宏,张晓涛,姚磊,等。基于小时发电模拟和负荷分布的屋顶光伏电势高分辨率分析。应用能源2023;348: 121553。lemaoui Y, El Maghraoui A, El si M,等。太阳能发电量预测:机器学习算法的比较研究。2023年能源报告;10: 1004 - 1012。Zeddini MA, Krim S, Mimouni MF。一种用于遮阳光伏系统最大功率点跟踪的先进元启发式算法的实验验证:三种方法的比较研究。2023年能源报告;10: 161 - 185。M . Martinez-Comesana, J . Eguiia-Oller P.基于NSGA-II和FDA的LSTM神经网络优化。人工智能工程应用2023;126: 106770。esespinoza - trejo DR, Castro LM, Barcenas E,等。基于数据驱动的DC/DC升压变换器开关故障诊断。IEEE工业电子学报(英文版);71(2): 1631 - 1640。李建军,李建军,李建军,等。单级光伏逆变器直流电压非线性控制的线性解耦方法。IEEE电力电子学报(英文版);38(9): 11652 - 11663。陈晓燕,徐翔,王杰,等。基于深度强化学习的光伏系统鲁棒主动功率平滑控制。IEEE可持续能源汇刊2023;14(3): 1585 - 1598。张建军,刘建军,李建军,等。基于优化算法的太阳能光伏发电系统最优方案研究。IEEE可持续能源汇刊2023;14(3): 1385 - 1396。金勇,金松,金松。基于集成agent的农业光伏系统可持续生产仿真建模框架。清洁生产学报(英文版);420: 138307。Daher DH, Aghaei M, Quansah DA,等。炎热沙漠气候条件下运行9.5年的光伏电站多环节退化分析。光伏技术进展:研究与应用2023;31日(9):888 - 907。Murugesan P, Winston David P, Murugesan P,等。部分遮阳光伏阵列的一步自适应重构技术。太阳能2023;263: 111949。Poulek V, Tyukhov I, Beranek V.退化光伏板的现场改造-成本和环境有效技术。太阳能2023;263: 111956。Brune B, Ortner I, Eder GC,等。基于先进统计方法的光伏组件材料降解与功率损耗的关联。太阳能材料和太阳能电池2023;260: 112485。刘建军,刘建军,李建军,等。基于深度能级瞬态光谱的氧化硅异质结组件降解相关缺陷研究。太阳能材料和太阳能电池2023;262: 112527。杨勇,李磊,徐东,等。背片紫外老化对硅光伏组件电性能的影响。太阳能材料和太阳能电池2023;262: 112558。Bampoulas A, Pallonetto F, Mangina E,等。基于Bayesian深度学习框架的住宅建筑能源灵活性评估。应用能源2023;348: 121576。Cuenca JJ, Daly HE, Hayes BP。共享电网:小规模能源发电公平接入的关键。应用能源2023;349: 21641。王晓华,王晓华,王晓华,等。光伏/WT/FC混合能源并网系统优化能源管理及技术、经济、社会、政治和环境效益分析。能源转换与管理2023;292: 117390。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photovoltaics literature survey (No. 186)

In order to help readers stay up-to-date in the field, each issue of Progress in Photovoltaics will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including IEEE Journal of Photovoltaics, Solar Energy Materials and Solar Cells, Renewable Energy, Renewable and Sustainable Energy Reviews, Journal of Applied Physics, and Applied Physics Letters. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at [email protected].

Schmid M. Revisiting the definition of solar cell generations. Advanced Optical Materials 2023; 2300697.

Ruud CJ, Gordon JM, Giebink NC. Microcell concentrating photovoltaics for space. Joule 2023; 7(6): 1093–1098.

van Sark W. Photovoltaics performance monitoring is essential in a 100% renewables-based society. Joule 2023; 7(7): 1388–1393.

Kittner N. Breaking down costs. Nature Energy 2023; 8(8): 779–780.

Klemun MM, Kavlak G, McNerney J, et al Mechanisms of hardware and soft technology evolution and the implications for solar energy cost trends. Nature Energy 2023; 8(8): 827.

Holovsky J, Ridzonova K, Amalathas AP, et al Below the Urbach edge: Solar cell loss analysis based on full external quantum efficiency spectra. Acs Energy Letters 2023; 8(7): 3221–3227.

Belabbes F, Cotfas DT, Cotfas PA, et al Using the snake optimization metaheuristic algorithms to extract the photovoltaic cells parameters. Energy Conversion and Management 2023; 292: 117373.

Otamendi U, Martinez I, Olaizola IG, et al A scalable framework for annotating photovoltaic cell defects in electroluminescence images. IEEE Transactions on Industrial Informatics 2023; 19(9): 9361–9369.

Vukovic M, Hillestad M, Jakovljevic M, et al Photoluminescence imaging of field-installed photovoltaic modules in diffuse irradiance. Journal of Applied Physics 2023; 134(7): 074903.

Vukovic M, Liland KH, Indahl UG, et al Extraction of photoluminescence with Pearson correlation coefficient from images of field-installed photovoltaic modules. Journal of Applied Physics 2023; 133(21): 214901.

Zhao YR, Descamps J, Al Bast NA, et al All-optical electrochemiluminescence. Journal of the American Chemical Society 2023; 145(31): 17420–17426.

Abdullah-Vetter Z, Dwivedi P, Buratti Y, et al Advanced analysis of internal quantum efficiency measurements using machine learning. Progress in Photovoltaics: Research and Applications 2023; 31(8): 790–802.

Steiner M, Siefer G. Translation of outdoor tandem PV module I–V measurements to a STC power rating. Progress in Photovoltaics: Research and Applications 2023; 31(8): 862–869.

Weber J, Roessler T. How to assess the electrical quality of solar cell interconnection in shingle solar modules. Progress in Photovoltaics: Research and Applications 2023; 31(9): 949–959.

Xu W, Monokroussos C, Müllejans H, et al Performance evaluation of procedures used to correct measured I-V characteristics of photovoltaic modules for temperature and irradiance. Progress in Photovoltaics: Research and Applications 2023; 31(10): 981–998.

Chen J, Lou YH, Wang ZK. Characterizing spatial and energetic distributions of trap states toward highly efficient perovskite photovoltaics. Small 2023; 2305064.

Krisztián D, Korsós F, Havasi G. Simultaneous measurement of charge carrier concentration, mobility, and lifetime. Solar Energy Materials and Solar Cells 2023; 260: 112461.

Sen C, Wu X, Wang H, et al Accelerated damp-heat testing at the cell-level of bifacial silicon HJT, PERC and TOPCon solar cells using sodium chloride. Solar Energy Materials and Solar Cells 2023; 262: 112554.

Turek M, Meusel M. Automated classification of electroluminescence images using artificial neural networks in correlation to solar cell performance parameters. Solar Energy Materials and Solar Cells 2023; 260: 112483.

Xu ZY, Liu XN, Zhou JK, et al Aluminum and molybdenum Co-doped zinc oxide films as dual-functional carrier-selective contact for silicon solar cells. Acs Applied Materials and Interfaces 2023; 15(29): 34964–34972.

Urdiroz U, Itoiz I, Sevilla J, et al Combining radiative cooling and light trapping strategies for improved performance of PERC bifacial silicon solar cells. Energy Reports 2023; 10: 1116–1125.

Getz MN, Povoli M, Koybasi O, et al Gamma-radiation hardness and long-term stability of ALD-Al2O3 surface passivated Si. Journal of Applied Physics 2023; 133(15): 154501.

Masuch P, Reichel C, Bonilla RS, et al Bias-voltage photoconductance and photoluminescence for the determination of silicon-dielectric interface properties in SiO2/Al2O3 stacks. Journal of Applied Physics 2023; 134(7): 075705.

Liu XN, Zhou JK, Ding Y, et al Atomic-layer-deposited H:MoOx function layer as efficient hole selective passivating contact in silicon solar cells. Materials Today Energy 2023; 36: 101362.

Wang YH, Gu ZY, Li L, et al Interfacial engineering of ZnS passivating contacts for crystalline silicon solar cells achieving 20% efficiency. Materials Today Energy 2023; 35: 101336.

Chu FH, Qu XL, He YC, et al Prediction of sub-pyramid texturing as the next step towards high efficiency silicon heterojunction solar cells. Nature Communications 2023; 14(1): 3596.

Bektaş G, Seyrek S, Keçeci AE, et al A comparative study on alternative industrial manufacturing routes for bifacial n-PERT silicon solar cells. Progress in Photovoltaics: Research and Applications 2023; 31(10): 1016–1022.

Li X, Yang Y, Jiang K, et al Potential-free sodium-induced degradation of silicon heterojunction solar cells. Progress in Photovoltaics: Research and Applications 2023; 31(9): 939–948.

Akgayev B, Sezgin A, Yilmaz M, et al Screen printable fire through nickel contacts for silicon solar cells. Solar Energy Materials and Solar Cells 2023; 261: 112528.

Cheng D, Gao Y. Effect of the diamond saw wires capillary adhesion on the thickness variation of ultra-thin photovoltaic silicon wafers during slicing. Solar Energy Materials and Solar Cells 2023; 261: 112525.

Ding D, Du D, Quan C, et al Application of dual-layer polysilicon deposited by PECVD in n-type TOPCon solar cells. Solar Energy Materials and Solar Cells 2023; 261: 112519.

Du M, Jia R, Li X, et al Theoretical analysis of backside polycrystalline silicon layer in the TOPCon solar cells. Solar Energy Materials and Solar Cells 2023; 262: 112555.

Gageot T, Veirman J, Jay F, et al Feasibility test of drastic indium cut down in SHJ solar cells and modules using ultra-thin ITO layers. Solar Energy Materials and Solar Cells 2023; 261: 112512.

Garland BM, Davis BE, Strandwitz NC. Investigating the effect of aluminum oxide fixed charge on Schottky barrier height in molybdenum oxide-based selective contacts. Solar Energy Materials and Solar Cells 2023; 262: 112537.

Guo C, Jia R, Tian X, et al Study on the influence of micro-alkali texturing and micro-alkali polishing process on the passivation and contact performance of n-TOPCon solar cells. Solar Energy Materials and Solar Cells 2023; 260: 112476.

Hu Z, Cong M, Zhang X, et al Effect of metal impurities concentration on electrical properties in n-type recharged-Czochralski silicon. Solar Energy Materials and Solar Cells 2023; 260: 112482.

Huang X, Zhou Y, Guo W, et al Zr-doped indium oxide films for silicon heterojunction solar cells. Solar Energy Materials and Solar Cells 2023; 260: 112480.

Maischner F, Greulich JM, Kwapil W, et al LeTID mitigation via an adapted firing process in p-type PERC cells from gallium-doped Czochralski silicon. Solar Energy Materials and Solar Cells 2023; 262: 112529.

Maischner F, Kwapil W, Greulich JM, et al Process influences on LeTID in Ga-doped silicon. Solar Energy Materials and Solar Cells 2023; 260: 112451.

Simon J, Fischer-Süßlin R, Zerfaß R, et al Correlation study between LeTID defect density, hydrogen and firing profile in Ga-doped crystalline silicon. Solar Energy Materials and Solar Cells 2023; 260: 112456.

Wang X, Gao K, Xu D, et al Atomic-layer-deposited BOx/Al2O3 stack for crystalline silicon surface passivation. Solar Energy Materials and Solar Cells 2023; 260: 112481.

Yu J, Chen Y, He J, et al Enhancing poly-Si contact through a highly conductive and ultra-thin TiN layer for high-efficiency passivating contact silicon solar cells. Solar Energy Materials and Solar Cells 2023; 260: 112491.

Choi YJ, Lim SY, Park JH, et al Atomic layer deposition-free monolithic perovskite/perovskite/silicon triple-junction solar cells. Acs Energy Letters 2023; 8(7): 3141–3146.

Bai YM, Han F, Zeng R, et al Synergy of the transmittance fluctuation factor and absorption selectivity for efficient semitransparent perovskite/organic tandem solar cells with high color-fidelity. Journal of Materials Chemistry A 2023; 11(33): 17514–17524.

Harter A, Mariotti S, Korte L, et al Double-sided nano-textured surfaces for industry compatible high-performance silicon heterojunction and perovskite/silicon tandem solar cells. Progress in Photovoltaics: Research and Applications 2023; 31(8): 813–823.

Peters IM, Rodríguez Gallegos CD, Lüer L, et al Practical limits of multijunction solar cells. Progress in Photovoltaics: Research and Applications 2023; 31(10): 1006–1015.

Singh M, Datta K, Amarnath A, et al Crystalline silicon solar cells with thin poly-SiOx carrier-selective passivating contacts for perovskite/c-Si tandem applications. Progress in Photovoltaics: Research and Applications 2023; 31(9): 877–887.

Wang G, Yue Z, Huang Z, et al High-performance perovskite/silicon heterojunction solar cells enabled by industrially compatible postannealing. Progress in Photovoltaics: Research and Applications 2023; 31(9): 921–930.

Chin XY, Turkay D, Steele JA, et al Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science 2023; 381(6653): 59–62.

De Wolf S, Aydin E. Tandems have the power perovskite-silicon tandem solar cells b reak the 30% efficiency threshold. Science 2023; 381(6653): 30–31.

Mariotti S, Kohnen E, Scheler F, et al Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells. Science 2023; 381(6653): 63–69.

De Rose A, Erath D, Nikitina V, et al Low-temperature metallization & interconnection for silicon heterojunction and perovskite silicon tandem solar cells. Solar Energy Materials and Solar Cells 2023; 261: 112515.

Li Y, Wang X, Xu Q, et al Nanocrystalline silicon-oxygen based tunneling recombination junctions in perovskite/silicon heterojunction tandem solar cells. Solar Energy Materials and Solar Cells 2023; 262: 112539.

Cao XJ, Guo JX, Li ZX, et al A broad-spectrum solid additive to further boost high-efficiency organic solar cells via morphology regulation. Acs Energy Letters 2023; 8(8): 3494–3503.

Muller JS, Comi M, Eisner F, et al Charge-transfer state dissociation efficiency can limit free charge generation in low-offset organic solar cells. Acs Energy Letters 2023; 8(8): 3387–3397.

Panidi J, Mazzolini E, Eisner F, et al Biorenewable solvents for high-performance organic solar cells. Acs Energy Letters 2023; 8(7): 3038–3047.

Li DH, Wang L, Guo CH, et al Co-crystallization of fibrillar polymer donors for efficient ternary organic solar cells. Acs Materials Letters 2023; 5(8): 2065–2073.

Zhang HR, Ran GL, Cui XY, et al Mitigating exciton recombination losses in organic solar cells by engineering nonfullerene molecular crystallization behavior. Advanced Energy Materials 2023; 2302063.

Song W, Ye QR, Yang SC, et al Ultra robust and highly efficient flexible organic solar cells with over 18% efficiency realized by incorporating a linker dimerized acceptor. Angewandte Chemie-International Edition 2023; 62(41): e202310034.

Jeon SJ, Kim YC, Kim JY, et al Molecular design of cost-effective donor polymers with high visible transmission for eco-friendly and efficient semitransparent organic solar cells. Chemical Engineering Journal 2023; 472: 144850.

Song X, Xu H, Jiang XY, et al Film-formation dynamics coordinated by intermediate state engineering enables efficient thickness-insensitive organic solar cells. Energy and Environmental Science 2023; 16(8): 3441–3452.

Zhang KN, Jiang ZA, Qiao JW, et al Dredging photocarrier trapping pathways via “charge bridge” driven exciton-phonon decoupling enables efficient and photothermal stable quaternary organic solar cells. Energy and Environmental Science 2023; 16(8): 3350–3362.

Mondelli P, Kaienburg P, Silvestri F, et al Understanding the role of non-fullerene acceptor crystallinity in the charge transport properties and performance of organic solar cells. Journal of Materials Chemistry A 2023; 11(30): 16263–16278.

Bai Y, Zhang Z, Zhou QJ, et al Geometry design of tethered small-molecule acceptor enables highly stable and efficient polymer solar cells. Nature Communications 2023; 14(1): 2926.

Liang HZ, Bi XQ, Chen HB, et al A rare case of brominated small molecule acceptors for high-efficiency organic solar cells. Nature Communications 2023; 14(1): 4707.

Paleti SHK, Hultmark S, Han JH, et al Hexanary blends: A strategy towards thermally stable organic photovoltaics. Nature Communications 2023; 14(1): 4608.

Zeng R, Zhu L, Zhang M, et al All-polymer organic solar cells with nano-to-micron hierarchical morphology and large light receiving angle. Nature Communications 2023; 14(1): 4148.

Sung Y-M, Tsao C-S, Cha H-C, et al High transparency and performance slot-die-coated large-area polymer solar module. Progress in Photovoltaics: Research and Applications 2023; 31(8): 803–812.

Feroze S, Distler A, Forberich K, et al Comparative analysis of outdoor energy harvest of organic and silicon solar modules for applications in BIPV systems. Solar Energy 2023; 263: 111894.

Tang YH, Tan WL, Fei ZP, et al Different energetics at donor:acceptor interfaces in bilayer and bulk-heterojunction polymer:non-fullerene organic solar cells. Solar RRL 2023; 2300471.

Loague Q, Keller ND, Muller A, et al Impact of molecular orientation on lateral and interfacial electron transfer at oxide interfaces. Acs Applied Materials and Interfaces 2023; 15(28): 34249–34262.

Castillo-Rodriguez J, Ortiz PD, Mahmood R, et al The development of Au-titania photoanode composites toward semiflexible dye-sensitized solar cells. Solar Energy 2023; 263: 111955.

Ghosh S, Pariari D, Behera T, et al Buried interface passivation of perovskite solar cells by atomic layer deposition of Al2O3. Acs Energy Letters 2023; 8(7): 3112–3,113.

Kitamura T, Wang L, Zhang Z, et al Sn perovskite solar cells with tin oxide nanoparticle layer as hole transport layer. Acs Energy Letters 2023; 8(8): 3565–3568.

Baumeler T, Saleh AA, Wani TA, et al Champion device architectures for low-cost and stable single-junction perovskite solar cells. Acs Materials Letters 2023; 5(9): 2408–2421.

Zhou YH, Yan DD, Zhang H, et al Ionic liquid-mediated intermediate phase adduct constructing for highly stable lead-free perovskite solar cells. Acs Materials Letters 2023; 5(8): 2096–2103.

Yue T, Li K, Li X, et al A binary solution strategy enables high-efficiency quasi-2D perovskite solar cells with excellent thermal stability. Acs Nano 2023; 17(15): 14632–14643.

Wu ZF, Jiang MW, Liu ZH, et al Highly efficient perovskite solar cells enabled by multiple ligand passivation. Advanced Energy Materials 2023; 13(27): 1903696.

Ulatowski AM, Elmestekawy KA, Patel JB, et al Contrasting charge-carrier dynamics across key metal-halide perovskite compositions through in situ simultaneous probes. Advanced Functional Materials 2023; 2305283.

Kim JH, Oh CM, Hwang IW, et al Efficient and stable quasi-2D Ruddlesden-Popper perovskite solar cells by tailoring crystal orientation and passivating surface defects. Advanced Materials 2023; 35(31): 2302143.

Rao H, Su Y, Liu GL, et al Monodisperse adducts-induced homogeneous nucleation towards high-quality tin-based perovskite film. Angewandte Chemie-International Edition 2023; 62(33): e202306712.

Ning L, Zha LY, Duan RZ, et al Fabrication of perovskite solar cells with PCE of 21.84% in open air by bottom-up defect passivation and stress releasement. Chemical Engineering Journal 2023; 471: 144279.

Zhou CC, Wang T, Xu JQ, et al Regulating molecular stacking to construct a superior interfacial contact for highly efficient and stable perovskite solar cells. Chemical Engineering Journal 2023; 472: 144975.

Jiang Q, Song ZN, Bramante RC, et al Highly efficient bifacial single-junction perovskite solar cells. Joule 2023; 7(7): 1543–1555.

Liu K, Rafique S, Musolino SF, et al Covalent bonding strategy to enable non-volatile organic cation perovskite for highly stable and efficient solar cells. Joule 2023; 7(5): 1033–1050.

Kim D, Yun JS, Sagotra A, et al Charge carrier transport properties of twin domains in halide perovskites. Journal of Materials Chemistry A 2023; 11(31): 16743–16754.

Yang Y, Chang Q, Yang YY, et al Multifunctional molecule interface modification for high-performance inverted wide-bandgap perovskite cells and modules. Journal of Materials Chemistry A 2023; 11(31): 16871–16877.

Pariari D, Mehta S, Mandal S, et al Realizing the lowest bandgap and exciton binding energy in a two-dimensional lead halide system. Journal of the American Chemical Society 2023; 145(29): 15896–15905.

Chen J, Lou YH, Wang KL, et al Front electric-field enabling highly efficient perovskite photovoltaics. Nano Energy 2023; 115: 108692.

Chen RH, Yang Y, Dai ZY, et al Patch-healed grain boundary strategy to stabilize perovskite films for high-performance solar modules. Nano Energy 2023; 115: 108759.

Li XG, Xie FM, Rafique S, et al Spectral response regulation strategy by downshifting materials to improve efficiency of flexible perovskite solar cells. Nano Energy 2023; 114: 108619.

Wu ZF, Bi EB, Ono LK, et al Passivation strategies for enhancing device performance of perovskite solar cells. Nano Energy 2023; 115: 108731.

Song ZL, Yang J, Dong XY, et al Inverted wide-bandgap 2D/3D perovskite solar cells with >22% efficiency and low voltage loss. Nano Letters 2023; 23(14): 6705–6712.

Fehr AMK, Agrawal A, Mandani F, et al Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%. Nature Communications 2023; 14(1): 3797.

Hartono NTP, Kobler H, Graniero P, et al Stability follows efficiency based on the analysis of a large perovskite solar cells ageing dataset. Nature Communications 2023; 14(1): 4869.

Huang ZQ, Li L, Wu TQ, et al Wearable perovskite solar cells by aligned liquid crystal elastomers. Nature Communications 2023; 14(1): 1204.

Qin W, Ali W, Wang JF, et al Suppressing non-radiative recombination in metal halide perovskite solar cells by synergistic effect of ferroelasticity. Nature Communications 2023; 14(1): 256.

Simbula A, Wu LY, Pitzalis F, et al Exciton dissociation in 2D layered metal-halide perovskites. Nature Communications 2023; 14(1): 4125.

Zhang H, Pfeifer L, Zakeeruddin SM, et al Tailoring passivators for highly efficient and stable perovskite solar cells. Nature Reviews Chemistry 2023; 7(9): 632–652.

Fei CB, Li NX, Wang MR, et al Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 2023; 380(6647): 823–829.

Li WJ, Li WM, Chen G, et al Tuning band alignment at grain boundaries for efficiency enhancement in Cu2ZnSnS4 solar cells. Acs Nano 2023; 17(16): 15742–15750.

Guo JJ, Ao JP, Zhang Y. A critical review on rational composition engineering in kesterite photovoltaic devices: self-regulation and mutual synergy. Journal of Materials Chemistry A 2023; 11(31): 16494–16518.

Gutzler R, Witte W, Kanevce A, et al VOC-losses across the band gap: Insights from a high-throughput inline process for CIGS solar cells. Progress in Photovoltaics: Research and Applications 2023; 31(10): 1023–1031.

Villa S, Aninat R, Yilmaz P, et al Insights into the moisture-induced degradation mechanisms on field-deployed CIGS modules. Progress in Photovoltaics: Research and Applications 2023; 31(8): 824–839.

Amrillah T. Enhancing the value of environment-friendly CZTS compound for next generation photovoltaic device: A review. Solar Energy 2023; 263: 111982.

Siripurapu M, Meinardi F, Brovelli S, et al Environmental effects on the performance of quantum dot luminescent solar concentrators. Acs Photonics 2023; 10(8): 2987–2993.

Briones E, Gutierrez A, Tapia-Contreras M, et al Antireflective properties of Al2O3/SiO2 multilayer stacks for GaAs solar cells. Applied Optics 2023; 62(22): 6007–6015.

Schlute KL, Johnston SW, Braun AK, et al GaAs solar cells grown on acoustically spalled GaAs substrates with 27% efficiency. Joule 2023; 7(7): 1529–1542.

Lim C, Choi M, Kim T, et al Effect of bandgap variation on photovoltaic properties of lead sulfide quantum dot solar cell. Materials Today Energy 2023; 36: 101357.

Barbon A, Ayuso PF, Bayon L, et al Experimental and numerical investigation of the influence of terrain slope on the of-axis trackers. Applied Energy 2023; 348: 121524.

Gilletly SD, Jackson ND, Staid A. Evaluating the impact of wildfire smoke on solar photovoltaic production. Applied Energy 2023; 348: 121303.

Jiang H, Zhang XT, Yao L, et al High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles. Applied Energy 2023; 348: 121553.

Ledmaoui Y, El Maghraoui A, El Aroussi M, et al Forecasting solar energy production: A comparative study of machine learning algorithms. Energy Reports 2023; 10: 1004–1012.

Zeddini MA, Krim S, Mimouni MF. Experimental validation of an advanced metaheuristic algorithm for maximum power point tracking of a shaded photovoltaic system: A comparative study between three approaches. Energy Reports 2023; 10: 161–185.

Martinez-Comesana M, Martinez-Torres J, Eguiia-Oller P. Optimisation of LSTM neural networks with NSGA-II and FDA for PV installations characterisation. Engineering Applications of Artificial Intelligence 2023; 126: 106770.

Espinoza-Trejo DR, Castro LM, Barcenas E, et al Data-driven switch fault diagnosis for DC/DC boost converters in photovoltaic applications. IEEE Transactions on Industrial Electronics 2024; 71(2): 1631–1640.

Callegaro L, Taghizadeh F, Deilami S, et al A simple technique linearizing and decoupling DC-link voltage control from source nonlinearity in single-stage photovoltaic inverters. IEEE Transactions on Power Electronics 2023; 38(9): 11652–11663.

Chen XY, Xu X, Wang J, et al Robust proactive power smoothing control of PV systems based on deep reinforcement learning. IEEE Transactions on Sustainable Energy 2023; 14(3): 1585–1598.

Mohammed KK, Mekhilef S, Buyamin S. Improved rat swarm optimizer algorithm-based MPPT under partially shaded conditions and load variation for PV systems. IEEE Transactions on Sustainable Energy 2023; 14(3): 1385–1396.

Kim Y, Kim S, Kim S. An integrated agent-based simulation modeling framework for sustainable production of an agrophotovoltaic system. Journal of Cleaner Production 2023; 420: 138307.

Daher DH, Aghaei M, Quansah DA, et al Multi-pronged degradation analysis of a photovoltaic power plant after 9.5 years of operation under hot desert climatic conditions. Progress in Photovoltaics: Research and Applications 2023; 31(9): 888–907.

Murugesan P, Winston David P, Murugesan P, et al One-step adaptive reconfiguration technique for partial shaded photovoltaic array. Solar Energy 2023; 263: 111949.

Poulek V, Tyukhov I, Beranek V. On site renovation of degraded PV panels – Cost and environmental effective technology. Solar Energy 2023; 263: 111956.

Brune B, Ortner I, Eder GC, et al Connecting material degradation and power loss of PV modules using advanced statistical methodology. Solar Energy Materials and Solar Cells 2023; 260: 112485.

Johnston SW, Jordan DC, Kern DB, et al Degradation-related defect level in weathered silicon heterojunction modules characterized by deep level transient spectroscopy. Solar Energy Materials and Solar Cells 2023; 262: 112527.

Yang Y, Li L, Xu D, et al Effect of ultraviolet aging of backsheet on electrical performance of silicon photovoltaic module. Solar Energy Materials and Solar Cells 2023; 262: 112558.

Bampoulas A, Pallonetto F, Mangina E, et al A Bayesian deep-learning framework for assessing the energy flexibility of residential buildings with multicomponent energy systems. Applied Energy 2023; 348: 121576.

Cuenca JJ, Daly HE, Hayes BP. Sharing the grid: The key to equitable access for small-scale energy generation. Applied Energy 2023; 349: 21641.

Adefarati T, Bansal RC, Shongwe T, et al Optimal energy management, technical, economic, social, political and environmental benefit analysis of a grid-connected PV/WT/FC hybrid energy system. Energy Conversion and Management 2023; 292: 117390.

Prol JL, Steininger KW, Williges K, et al Potential gains of long-distance trade in electricity. Energy Economics 2023; 124: 106739.

Niu JY, Wu JY, Qin WM, et al Projection of future carbon benefits by photovoltaic power potential in China using CMIP6 statistical downscaling data. Environmental Research Letters 2023; 18(9): 094013.

Dogan E, Luni T, Majeed MT, et al The nexus between global carbon and renewable energy sources: A step towards sustainability. Journal of Cleaner Production 2023; 416: 137927.

Wang YJ, Wang R, Tanaka K, et al Accelerating the energy transition towards photovoltaic and wind in China. Nature 2023; 619(7971): 761.

Besseau R, Tannous S, Douziech M, et al An open-source parameterized life cycle model to assess the environmental performance of silicon-based photovoltaic systems. Progress in Photovoltaics: Research and Applications 2023; 31(9): 908–920.

Shao JL, Li J, Yao XL. Net benefits change of waste photovoltaic recycling in China: Projection of waste based on multiple factors. Journal of Cleaner Production 2023; 417: 137984.

Suyanto ER, Sofi M, Lumantarna E, et al Comparison of waste photovoltaic panel processing alternatives in Australia. Journal of Cleaner Production 2023; 418: 138128.

Brenes GH, Riech I, Giácoman-Vallejos G, et al Chemical method for ethyl vinyl acetate removal in crystalline silicon photovoltaic modules. Solar Energy 2023; 263: 111778.

Yu Y, Li S, Xi F, et al Influence of the structural differences between end-of-life Al-BSF and PERC modules on the Al leaching separation behavior. Solar Energy 2023; 263: 111938.

Feng Y, He Y, Zhang G, et al A promising method for the liberation and separation of solar cells from damaged crystalline silicon photovoltaic modules. Solar Energy Materials and Solar Cells 2023; 262: 112553.

Sah D, Chitra, Upadhyay NK, et al Growth and analysis of polycrystalline silicon ingots using recycled silicon from waste solar module. Solar Energy Materials and Solar Cells 2023; 261: 112524.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
期刊最新文献
Issue Information Photovoltaics Literature Survey (No. 194) Issue Information Investigation of Potential-Induced Degradation and Recovery in Perovskite Minimodules Role of Ag Addition on the Microscopic Material Properties of (Ag,Cu)(In,Ga)Se2 Absorbers and Their Effects on Losses in the Open-Circuit Voltage of Corresponding Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1