{"title":"人体血管有限元建模与生物力学研究进展及法医应用。","authors":"Yong Zeng, Dong-Hua Zou, Ying Fan, Qing Xu, Lu-Yang Tao, Yi-Jiu Chen, Zheng-Dong Li","doi":"10.12116/j.issn.1004-5619.2021.411103","DOIUrl":null,"url":null,"abstract":"<p><p>The finite element method (FEM) is a mathematical method for obtaining approximate solutions to a wide variety of engineering problems. With the development of computer technology, it is gradually applied to the study of biomechanics of human body. The application of the combination of FEM and biomechanics in exploring the relationship between vascular injury and disease, and pathological mechanisms will be a technological innovation for traditional forensic medicine. This paper reviews the construction and development of human vascular FEM modeling, and its research progress on the vascular biomechanics. This paper also looks to the application prospects of FEM modeling in forensic pathology.</p>","PeriodicalId":15899,"journal":{"name":"Journal of Forensic Medicine","volume":"39 5","pages":"471-477"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research Progress and Forensic Application of Human Vascular Finite Element Modeling and Biomechanics.\",\"authors\":\"Yong Zeng, Dong-Hua Zou, Ying Fan, Qing Xu, Lu-Yang Tao, Yi-Jiu Chen, Zheng-Dong Li\",\"doi\":\"10.12116/j.issn.1004-5619.2021.411103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The finite element method (FEM) is a mathematical method for obtaining approximate solutions to a wide variety of engineering problems. With the development of computer technology, it is gradually applied to the study of biomechanics of human body. The application of the combination of FEM and biomechanics in exploring the relationship between vascular injury and disease, and pathological mechanisms will be a technological innovation for traditional forensic medicine. This paper reviews the construction and development of human vascular FEM modeling, and its research progress on the vascular biomechanics. This paper also looks to the application prospects of FEM modeling in forensic pathology.</p>\",\"PeriodicalId\":15899,\"journal\":{\"name\":\"Journal of Forensic Medicine\",\"volume\":\"39 5\",\"pages\":\"471-477\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forensic Medicine\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.12116/j.issn.1004-5619.2021.411103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forensic Medicine","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.12116/j.issn.1004-5619.2021.411103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research Progress and Forensic Application of Human Vascular Finite Element Modeling and Biomechanics.
The finite element method (FEM) is a mathematical method for obtaining approximate solutions to a wide variety of engineering problems. With the development of computer technology, it is gradually applied to the study of biomechanics of human body. The application of the combination of FEM and biomechanics in exploring the relationship between vascular injury and disease, and pathological mechanisms will be a technological innovation for traditional forensic medicine. This paper reviews the construction and development of human vascular FEM modeling, and its research progress on the vascular biomechanics. This paper also looks to the application prospects of FEM modeling in forensic pathology.