利用SemKur-IM(一种新型荧光双硫代探针)实时检测ipsc衍生的神经元培养物中的硫醇。

IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS SLAS Discovery Pub Date : 2023-11-20 DOI:10.1016/j.slasd.2023.11.003
Roxanne Alvarez , Jayson Kurfis , Michael Hendrickson , Daniel S. Sem
{"title":"利用SemKur-IM(一种新型荧光双硫代探针)实时检测ipsc衍生的神经元培养物中的硫醇。","authors":"Roxanne Alvarez ,&nbsp;Jayson Kurfis ,&nbsp;Michael Hendrickson ,&nbsp;Daniel S. Sem","doi":"10.1016/j.slasd.2023.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>Neurological disorders associated with inflammation and oxidative stress show reduced glutathione (GSH) levels in the human brain. Drug discovery efforts and pharmacological studies would benefit from tools (<em>e.g.</em> chemical probes) that detect changes to oxidative stress, from the perspective of physiologically-relevant reporters like cellular thiols, including GSH. To this end, we have developed a fluorescence visualization assay using iPSC-derived cortical glutamatergic neurons that were loaded with 25 μM of a novel thiol-detection fluorescent probe, SemKur-IM. This probe enables visualization of cellular thiol level changes in the neuronal somas and neurites, in response exposure to N-acetyl-cysteine (NAC). Cellular thiol redox state was observed to change, based on an increase in green fluorescence (485 nm excitation maximum; 525 nm emission maximum) due to changes in thiol levels, from 0 to 40 mM. Interestingly, prior to treatment with NAC, cells did not appear to have significant levels of reduced thiols. Our studies demonstrate the utility of SemKur-IM in the detection of thiol levels in live cells in response to chemical exposures, such as from drugs that return the cell to a healthier reduced state. An initial application to screening the effects of an Alzheimer's disease drug candidate, Posiphen, using fluorescence cell sorting is presented. Other potential applications include high throughput screening of central nervous system (CNS) drugs thought to work by affecting cellular redox state in neurons.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"29 3","pages":"Article 100127"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555223000813/pdfft?md5=7e136270f0fb36ee6010dfc773e8300d&pid=1-s2.0-S2472555223000813-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Real-time thiol detection in iPSC-derived neuron cultures using SemKur-IM, a novel fluorescent dithio probe\",\"authors\":\"Roxanne Alvarez ,&nbsp;Jayson Kurfis ,&nbsp;Michael Hendrickson ,&nbsp;Daniel S. Sem\",\"doi\":\"10.1016/j.slasd.2023.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neurological disorders associated with inflammation and oxidative stress show reduced glutathione (GSH) levels in the human brain. Drug discovery efforts and pharmacological studies would benefit from tools (<em>e.g.</em> chemical probes) that detect changes to oxidative stress, from the perspective of physiologically-relevant reporters like cellular thiols, including GSH. To this end, we have developed a fluorescence visualization assay using iPSC-derived cortical glutamatergic neurons that were loaded with 25 μM of a novel thiol-detection fluorescent probe, SemKur-IM. This probe enables visualization of cellular thiol level changes in the neuronal somas and neurites, in response exposure to N-acetyl-cysteine (NAC). Cellular thiol redox state was observed to change, based on an increase in green fluorescence (485 nm excitation maximum; 525 nm emission maximum) due to changes in thiol levels, from 0 to 40 mM. Interestingly, prior to treatment with NAC, cells did not appear to have significant levels of reduced thiols. Our studies demonstrate the utility of SemKur-IM in the detection of thiol levels in live cells in response to chemical exposures, such as from drugs that return the cell to a healthier reduced state. An initial application to screening the effects of an Alzheimer's disease drug candidate, Posiphen, using fluorescence cell sorting is presented. Other potential applications include high throughput screening of central nervous system (CNS) drugs thought to work by affecting cellular redox state in neurons.</p></div>\",\"PeriodicalId\":21764,\"journal\":{\"name\":\"SLAS Discovery\",\"volume\":\"29 3\",\"pages\":\"Article 100127\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2472555223000813/pdfft?md5=7e136270f0fb36ee6010dfc773e8300d&pid=1-s2.0-S2472555223000813-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Discovery\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472555223000813\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Discovery","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555223000813","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

与炎症和氧化应激相关的神经系统疾病显示人脑中谷胱甘肽(GSH)水平降低。从细胞硫醇(包括谷胱甘肽)等生理相关报告者的角度来看,药物发现工作和药理学研究将受益于检测氧化应激变化的工具(例如化学探针)。为此,我们利用ipsc衍生的皮质谷氨酸能神经元开发了一种荧光可视化实验,该神经元装载了25 μM的新型硫醇检测荧光探针SemKur-IM。这种探针能够可视化神经元体细胞和神经突中细胞硫醇水平的变化,以响应暴露于n -乙酰半胱氨酸(NAC)。观察到细胞硫醇氧化还原状态的变化,基于绿色荧光的增加(485 nm激发最大值;525 nm发射最大值),这是由于硫醇水平的变化,从0到40 mM。有趣的是,在NAC处理之前,细胞似乎没有显著水平的硫醇还原。我们的研究证明了SemKur-IM在检测活细胞中对化学物质暴露的硫醇水平方面的效用,例如从药物中使细胞恢复到更健康的还原状态。初步应用筛选阿尔茨海默病的候选药物,Posiphen,使用荧光细胞分选的影响提出。其他潜在的应用包括高通量筛选中枢神经系统(CNS)药物,这些药物被认为是通过影响神经元的细胞氧化还原状态起作用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time thiol detection in iPSC-derived neuron cultures using SemKur-IM, a novel fluorescent dithio probe

Neurological disorders associated with inflammation and oxidative stress show reduced glutathione (GSH) levels in the human brain. Drug discovery efforts and pharmacological studies would benefit from tools (e.g. chemical probes) that detect changes to oxidative stress, from the perspective of physiologically-relevant reporters like cellular thiols, including GSH. To this end, we have developed a fluorescence visualization assay using iPSC-derived cortical glutamatergic neurons that were loaded with 25 μM of a novel thiol-detection fluorescent probe, SemKur-IM. This probe enables visualization of cellular thiol level changes in the neuronal somas and neurites, in response exposure to N-acetyl-cysteine (NAC). Cellular thiol redox state was observed to change, based on an increase in green fluorescence (485 nm excitation maximum; 525 nm emission maximum) due to changes in thiol levels, from 0 to 40 mM. Interestingly, prior to treatment with NAC, cells did not appear to have significant levels of reduced thiols. Our studies demonstrate the utility of SemKur-IM in the detection of thiol levels in live cells in response to chemical exposures, such as from drugs that return the cell to a healthier reduced state. An initial application to screening the effects of an Alzheimer's disease drug candidate, Posiphen, using fluorescence cell sorting is presented. Other potential applications include high throughput screening of central nervous system (CNS) drugs thought to work by affecting cellular redox state in neurons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SLAS Discovery
SLAS Discovery Chemistry-Analytical Chemistry
CiteScore
7.00
自引率
3.20%
发文量
58
审稿时长
39 days
期刊介绍: Advancing Life Sciences R&D: SLAS Discovery reports how scientists develop and utilize novel technologies and/or approaches to provide and characterize chemical and biological tools to understand and treat human disease. SLAS Discovery is a peer-reviewed journal that publishes scientific reports that enable and improve target validation, evaluate current drug discovery technologies, provide novel research tools, and incorporate research approaches that enhance depth of knowledge and drug discovery success. SLAS Discovery emphasizes scientific and technical advances in target identification/validation (including chemical probes, RNA silencing, gene editing technologies); biomarker discovery; assay development; virtual, medium- or high-throughput screening (biochemical and biological, biophysical, phenotypic, toxicological, ADME); lead generation/optimization; chemical biology; and informatics (data analysis, image analysis, statistics, bio- and chemo-informatics). Review articles on target biology, new paradigms in drug discovery and advances in drug discovery technologies. SLAS Discovery is of particular interest to those involved in analytical chemistry, applied microbiology, automation, biochemistry, bioengineering, biomedical optics, biotechnology, bioinformatics, cell biology, DNA science and technology, genetics, information technology, medicinal chemistry, molecular biology, natural products chemistry, organic chemistry, pharmacology, spectroscopy, and toxicology. SLAS Discovery is a member of the Committee on Publication Ethics (COPE) and was published previously (1996-2016) as the Journal of Biomolecular Screening (JBS).
期刊最新文献
Varieties of interactions of anti-CD133 aptamers with cell cultures from patient glioblastoma TGF-β receptor-specific NanoBRET Target Engagement in living cells for high-throughput kinase inhibitor screens The development of a novel high-throughput membrane potential assay and a solid-supported membrane (SSM)-based electrophysiological assay to study the pharmacological inhibition of GLUT9/SLC2A9 isoforms in a drug discovery program The history, landscape, and outlook of human cell line authentication and security Development of a live cell assay for real-time monitoring the interactions between the Hippo pathway components 14-3-3 and TAZ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1