{"title":"内可逆闭合Atkinson循环的多目标优化","authors":"Zheng Gong, Yanlin Ge, Lingen Chen, Huijun Feng","doi":"10.1515/jnet-2023-0051","DOIUrl":null,"url":null,"abstract":"Based on finite-time-thermodynamic theory and the model established in previous literature, the multi-objective optimization analysis for an endoreversible closed Atkinson cycle is conducted through using the NSGA-II algorithm. With the final state point temperature (<jats:italic>T</jats:italic> <jats:sub>2</jats:sub>) of cycle compression process as the optimization variable and the thermal efficiency (<jats:italic>η</jats:italic>), the dimensionless efficient power (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msub> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mo>̄</m:mo> </m:mover> </m:mrow> <m:mrow> <m:mi>P</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math> ${\\bar{E}}_{P}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jnetdy-2023-0051_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula>), the dimensionless ecological function (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mo>̄</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math> $\\bar{E}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jnetdy-2023-0051_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula>) and the dimensionless power (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>P</m:mi> </m:mrow> <m:mo>̄</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math> $\\bar{P}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jnetdy-2023-0051_ineq_003.png\" /> </jats:alternatives> </jats:inline-formula>) as the optimization objectives, the influences of <jats:italic>T</jats:italic> <jats:sub>2</jats:sub> on the four optimization objectives are analyzed, multi-objective optimization analyses of single-, two-, three- and four-objective are conducted, and the optimal cycle optimization objective combination is chosen by using three decision-making methods which include LINMAP, TOPSIS, and Shannon Entropy. The result shows that when four-objective optimization is conducted, with the ascent of <jats:italic>T</jats:italic> <jats:sub>2</jats:sub>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>P</m:mi> </m:mrow> <m:mo>̄</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math> $\\bar{P}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jnetdy-2023-0051_ineq_004.png\" /> </jats:alternatives> </jats:inline-formula> descends, <jats:italic>η</jats:italic> ascends, both <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mo>̄</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math> $\\bar{E}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jnetdy-2023-0051_ineq_005.png\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msub> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mo>̄</m:mo> </m:mover> </m:mrow> <m:mrow> <m:mi>P</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math> ${\\bar{E}}_{P}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jnetdy-2023-0051_ineq_006.png\" /> </jats:alternatives> </jats:inline-formula> firstly ascend and then descend. In this situation, the deviation index is the smallest and equals to 0.2657 under the decision-making method of Shannon Entropy, so its optimization result is the optimal. The multi-objective optimization results are able to provide certain guidelines for the design of practical closed Atkinson cycle heat engine.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"83 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-objective optimization of an endoreversible closed Atkinson cycle\",\"authors\":\"Zheng Gong, Yanlin Ge, Lingen Chen, Huijun Feng\",\"doi\":\"10.1515/jnet-2023-0051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on finite-time-thermodynamic theory and the model established in previous literature, the multi-objective optimization analysis for an endoreversible closed Atkinson cycle is conducted through using the NSGA-II algorithm. With the final state point temperature (<jats:italic>T</jats:italic> <jats:sub>2</jats:sub>) of cycle compression process as the optimization variable and the thermal efficiency (<jats:italic>η</jats:italic>), the dimensionless efficient power (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msub> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mo>̄</m:mo> </m:mover> </m:mrow> <m:mrow> <m:mi>P</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math> ${\\\\bar{E}}_{P}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jnetdy-2023-0051_ineq_001.png\\\" /> </jats:alternatives> </jats:inline-formula>), the dimensionless ecological function (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mo>̄</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math> $\\\\bar{E}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jnetdy-2023-0051_ineq_002.png\\\" /> </jats:alternatives> </jats:inline-formula>) and the dimensionless power (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mrow> <m:mi>P</m:mi> </m:mrow> <m:mo>̄</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math> $\\\\bar{P}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jnetdy-2023-0051_ineq_003.png\\\" /> </jats:alternatives> </jats:inline-formula>) as the optimization objectives, the influences of <jats:italic>T</jats:italic> <jats:sub>2</jats:sub> on the four optimization objectives are analyzed, multi-objective optimization analyses of single-, two-, three- and four-objective are conducted, and the optimal cycle optimization objective combination is chosen by using three decision-making methods which include LINMAP, TOPSIS, and Shannon Entropy. The result shows that when four-objective optimization is conducted, with the ascent of <jats:italic>T</jats:italic> <jats:sub>2</jats:sub>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mrow> <m:mi>P</m:mi> </m:mrow> <m:mo>̄</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math> $\\\\bar{P}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jnetdy-2023-0051_ineq_004.png\\\" /> </jats:alternatives> </jats:inline-formula> descends, <jats:italic>η</jats:italic> ascends, both <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mo>̄</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math> $\\\\bar{E}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jnetdy-2023-0051_ineq_005.png\\\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msub> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mo>̄</m:mo> </m:mover> </m:mrow> <m:mrow> <m:mi>P</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math> ${\\\\bar{E}}_{P}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jnetdy-2023-0051_ineq_006.png\\\" /> </jats:alternatives> </jats:inline-formula> firstly ascend and then descend. In this situation, the deviation index is the smallest and equals to 0.2657 under the decision-making method of Shannon Entropy, so its optimization result is the optimal. The multi-objective optimization results are able to provide certain guidelines for the design of practical closed Atkinson cycle heat engine.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":\"83 7\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2023-0051\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2023-0051","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
摘要
基于有限时间热力学理论和前人建立的模型,利用NSGA-II算法对内可逆封闭Atkinson循环进行多目标优化分析。以循环压缩过程最终状态点温度(t2)为优化变量,以热效率(η)、无量纲效率功率(E′P ${\bar{E}}_{P}$)、无量纲生态函数(E′$\bar{E}$)和无量纲功率(P′$\bar{P}$)为优化目标,分析了t2对4个优化目标的影响,单、采用LINMAP、TOPSIS和Shannon熵三种决策方法,选择最优周期优化目标组合。结果表明,在进行四目标优化时,随着t2的增大,P $\bar{P}$减小,η增大,E $ $\bar{E}$和E $ P ${\bar{E}}_{P}$均先增大后减小。在这种情况下,香农熵决策方法的偏差指数最小,为0.2657,因此其优化结果为最优。多目标优化结果可为实际闭式阿特金森循环热机的设计提供一定的指导。
Multi-objective optimization of an endoreversible closed Atkinson cycle
Based on finite-time-thermodynamic theory and the model established in previous literature, the multi-objective optimization analysis for an endoreversible closed Atkinson cycle is conducted through using the NSGA-II algorithm. With the final state point temperature (T2) of cycle compression process as the optimization variable and the thermal efficiency (η), the dimensionless efficient power (ĒP ${\bar{E}}_{P}$ ), the dimensionless ecological function (Ē $\bar{E}$ ) and the dimensionless power (P̄ $\bar{P}$ ) as the optimization objectives, the influences of T2 on the four optimization objectives are analyzed, multi-objective optimization analyses of single-, two-, three- and four-objective are conducted, and the optimal cycle optimization objective combination is chosen by using three decision-making methods which include LINMAP, TOPSIS, and Shannon Entropy. The result shows that when four-objective optimization is conducted, with the ascent of T2, P̄ $\bar{P}$ descends, η ascends, both Ē $\bar{E}$ and ĒP ${\bar{E}}_{P}$ firstly ascend and then descend. In this situation, the deviation index is the smallest and equals to 0.2657 under the decision-making method of Shannon Entropy, so its optimization result is the optimal. The multi-objective optimization results are able to provide certain guidelines for the design of practical closed Atkinson cycle heat engine.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.