数字3D工作服设计

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Graphics Pub Date : 2023-11-16 DOI:10.1145/3631945
Jing Ren, Aviv Segall, Olga Sorkine-Hornung
{"title":"数字3D工作服设计","authors":"Jing Ren, Aviv Segall, Olga Sorkine-Hornung","doi":"10.1145/3631945","DOIUrl":null,"url":null,"abstract":"<p>We develop an optimization-based method to model <i>smocking</i>, a surface embroidery technique that provides decorative geometric texturing while maintaining stretch properties of the fabric. During smocking, multiple pairs of points on the fabric are stitched together, creating non-manifold geometric features and visually pleasing textures. Designing smocking patterns is challenging, because the outcome of stitching is unpredictable: the final texture is often revealed only when the whole smocking process is completed, necessitating painstaking physical fabrication and time consuming trial-and-error experimentation. This motivates us to seek a digital smocking design method. Straightforward attempts to compute smocked fabric geometry using surface deformation or cloth simulation methods fail to produce realistic results, likely due to the intricate structure of the designs, the large number of contacts and high-curvature folds. We instead formulate smocking as a graph embedding and shape deformation problem. We extract a coarse graph representing the fabric and the stitching constraints, and then derive the graph structure of the smocked result. We solve for the 3D embedding of this graph, which in turn reliably guides the deformation of the high-resolution fabric mesh. Our optimization based method is simple, efficient, and flexible, which allows us to build an interactive system for smocking pattern exploration. To demonstrate the accuracy of our method, we compare our results to real fabrications on a large set of smocking patterns.</p>","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"87 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital 3D Smocking Design\",\"authors\":\"Jing Ren, Aviv Segall, Olga Sorkine-Hornung\",\"doi\":\"10.1145/3631945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop an optimization-based method to model <i>smocking</i>, a surface embroidery technique that provides decorative geometric texturing while maintaining stretch properties of the fabric. During smocking, multiple pairs of points on the fabric are stitched together, creating non-manifold geometric features and visually pleasing textures. Designing smocking patterns is challenging, because the outcome of stitching is unpredictable: the final texture is often revealed only when the whole smocking process is completed, necessitating painstaking physical fabrication and time consuming trial-and-error experimentation. This motivates us to seek a digital smocking design method. Straightforward attempts to compute smocked fabric geometry using surface deformation or cloth simulation methods fail to produce realistic results, likely due to the intricate structure of the designs, the large number of contacts and high-curvature folds. We instead formulate smocking as a graph embedding and shape deformation problem. We extract a coarse graph representing the fabric and the stitching constraints, and then derive the graph structure of the smocked result. We solve for the 3D embedding of this graph, which in turn reliably guides the deformation of the high-resolution fabric mesh. Our optimization based method is simple, efficient, and flexible, which allows us to build an interactive system for smocking pattern exploration. To demonstrate the accuracy of our method, we compare our results to real fabrications on a large set of smocking patterns.</p>\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3631945\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3631945","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种基于优化的方法来模拟罩衫,一种表面刺绣技术,在保持织物拉伸性能的同时提供装饰性几何纹理。在缝制过程中,织物上的多对点被缝合在一起,创造出非流形的几何特征和视觉上令人愉悦的纹理。设计罩衫的样式是具有挑战性的,因为缝制的结果是不可预测的:最终的纹理往往只有在整个罩衫过程完成后才能显现出来,这需要艰苦的物理制作和耗时的反复试验。这促使我们寻求一种数字化的工作服设计方法。使用表面变形或布料模拟方法计算罩衫织物几何形状的直接尝试无法产生逼真的结果,可能是由于设计的复杂结构,大量接触和高曲率褶皱。我们将smocking表述为一个图嵌入和形状变形问题。我们提取了一个表示织物和拼接约束的粗图,然后导出了被裁剪结果的图结构。我们求解了该图的三维嵌入,从而可靠地指导高分辨率织物网格的变形。基于优化的方法简单、高效、灵活,可以构建一个用于烟纹探索的交互式系统。为了证明我们方法的准确性,我们将我们的结果与大量吸烟模式的实际制造进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Digital 3D Smocking Design

We develop an optimization-based method to model smocking, a surface embroidery technique that provides decorative geometric texturing while maintaining stretch properties of the fabric. During smocking, multiple pairs of points on the fabric are stitched together, creating non-manifold geometric features and visually pleasing textures. Designing smocking patterns is challenging, because the outcome of stitching is unpredictable: the final texture is often revealed only when the whole smocking process is completed, necessitating painstaking physical fabrication and time consuming trial-and-error experimentation. This motivates us to seek a digital smocking design method. Straightforward attempts to compute smocked fabric geometry using surface deformation or cloth simulation methods fail to produce realistic results, likely due to the intricate structure of the designs, the large number of contacts and high-curvature folds. We instead formulate smocking as a graph embedding and shape deformation problem. We extract a coarse graph representing the fabric and the stitching constraints, and then derive the graph structure of the smocked result. We solve for the 3D embedding of this graph, which in turn reliably guides the deformation of the high-resolution fabric mesh. Our optimization based method is simple, efficient, and flexible, which allows us to build an interactive system for smocking pattern exploration. To demonstrate the accuracy of our method, we compare our results to real fabrications on a large set of smocking patterns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
期刊最新文献
Direct Manipulation of Procedural Implicit Surfaces 3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting Quark: Real-time, High-resolution, and General Neural View Synthesis Differentiable Owen Scrambling ELMO: Enhanced Real-time LiDAR Motion Capture through Upsampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1