高强铝合金可逆时效与成形一体化:原理与理论基础

IF 14 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Machine Tools & Manufacture Pub Date : 2023-11-24 DOI:10.1016/j.ijmachtools.2023.104091
Chunhui Liu , Jun He , Zhuangzhuang Feng , Peipei Ma , Lihua Zhan
{"title":"高强铝合金可逆时效与成形一体化:原理与理论基础","authors":"Chunhui Liu ,&nbsp;Jun He ,&nbsp;Zhuangzhuang Feng ,&nbsp;Peipei Ma ,&nbsp;Lihua Zhan","doi":"10.1016/j.ijmachtools.2023.104091","DOIUrl":null,"url":null,"abstract":"<div><p>Simultaneously improving the formability and post-formed strength of high-strength aluminum (Al) alloys, such as Al–Zn–Mg–Cu alloys, is essential in manufacturing complex-shaped panel components. The strict requirements on heat-treatment condition and high tooling costs limit the applications of current forming methods. A novel process called integrated reversion ageing and forming (IRAF) is proposed to form naturally aged (NA or T4 tempered) Al alloys. A principle-based concept analysis and systematic thermo-mechanical-metallurgical study of the IRAF process were performed. Additionally, tensile tests were conducted to evaluate the effects of parameters including heating rate, holding time, and forming temperature on formability and baked strength. The deformability of the AA7075-T4 alloy can be significantly enhanced through rapid heating to the reversion ageing temperature (150–300 °C), followed by short-term holding, as evidenced by the reduced yield strength of 200 MPa and increased uniform ductility. An instant strength increase to a value close to that of the T6 state was obtained after a short bake hardening (BH) treatment. Further, temperature-time-property (TTP) diagrams were established based on the correlation between the measured mechanical properties and through-process microstructure evolution to explain the mechanism underlying the optimised processing window of IRAF. The results indicate that fast-heating rate (&gt;300 °C/min) promotes the reversion of NA clusters and inhibits re-precipitation of solutes, thereby improving the warm formability. Reversion ageing above 240 °C could induce the formation of coarse η'/η phases, leading to a considerably declined BH response. To accurately predict the strength evolution and deformation behavior during IRAF, a physical-based unified constitutive model was constructed by considering the reversion of NA clusters and solute re-precipitation. The bending and drawing tests on the AA7075-T4 alloy sheets verified that IRAF in the most-reverted state enabled optimum formability. The findings inspire promoting the reversion of pre-existing metastable particles to improve warm formability and post-formed age hardening.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"194 ","pages":"Article 104091"},"PeriodicalIF":14.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890695523000998/pdfft?md5=7ab5eef26e0e5a07b7254bd2fa320817&pid=1-s2.0-S0890695523000998-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrating reversion ageing and forming of high-strength Al alloys: Principles and theoretical basis\",\"authors\":\"Chunhui Liu ,&nbsp;Jun He ,&nbsp;Zhuangzhuang Feng ,&nbsp;Peipei Ma ,&nbsp;Lihua Zhan\",\"doi\":\"10.1016/j.ijmachtools.2023.104091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Simultaneously improving the formability and post-formed strength of high-strength aluminum (Al) alloys, such as Al–Zn–Mg–Cu alloys, is essential in manufacturing complex-shaped panel components. The strict requirements on heat-treatment condition and high tooling costs limit the applications of current forming methods. A novel process called integrated reversion ageing and forming (IRAF) is proposed to form naturally aged (NA or T4 tempered) Al alloys. A principle-based concept analysis and systematic thermo-mechanical-metallurgical study of the IRAF process were performed. Additionally, tensile tests were conducted to evaluate the effects of parameters including heating rate, holding time, and forming temperature on formability and baked strength. The deformability of the AA7075-T4 alloy can be significantly enhanced through rapid heating to the reversion ageing temperature (150–300 °C), followed by short-term holding, as evidenced by the reduced yield strength of 200 MPa and increased uniform ductility. An instant strength increase to a value close to that of the T6 state was obtained after a short bake hardening (BH) treatment. Further, temperature-time-property (TTP) diagrams were established based on the correlation between the measured mechanical properties and through-process microstructure evolution to explain the mechanism underlying the optimised processing window of IRAF. The results indicate that fast-heating rate (&gt;300 °C/min) promotes the reversion of NA clusters and inhibits re-precipitation of solutes, thereby improving the warm formability. Reversion ageing above 240 °C could induce the formation of coarse η'/η phases, leading to a considerably declined BH response. To accurately predict the strength evolution and deformation behavior during IRAF, a physical-based unified constitutive model was constructed by considering the reversion of NA clusters and solute re-precipitation. The bending and drawing tests on the AA7075-T4 alloy sheets verified that IRAF in the most-reverted state enabled optimum formability. The findings inspire promoting the reversion of pre-existing metastable particles to improve warm formability and post-formed age hardening.</p></div>\",\"PeriodicalId\":14011,\"journal\":{\"name\":\"International Journal of Machine Tools & Manufacture\",\"volume\":\"194 \",\"pages\":\"Article 104091\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0890695523000998/pdfft?md5=7ab5eef26e0e5a07b7254bd2fa320817&pid=1-s2.0-S0890695523000998-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Tools & Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890695523000998\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695523000998","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

同时提高高强度铝(Al)合金(如Al - zn - mg - cu合金)的成形性和成形后强度是制造复杂形状面板部件的必要条件。对热处理条件的严格要求和高昂的模具成本限制了现有成形方法的应用。提出了一种称为综合回火时效和成形(IRAF)的新工艺来形成自然时效(NA或T4回火)铝合金。对该工艺进行了基于原理的概念分析和系统的热-机械-冶金研究。此外,还进行了拉伸试验,以评估加热速率、保温时间和成形温度等参数对成形性和烘烤强度的影响。快速加热至150 ~ 300 ℃后,再进行短期保温,可显著提高合金的变形能力,屈服强度降低200 MPa,塑性均匀性提高。经过短时间的烘烤硬化(BH)处理后,强度瞬间提高到接近T6状态的值。此外,基于测量的力学性能与整个工艺组织演变之间的相关性,建立了温度-时间-性能(TTP)图,以解释优化的IRAF加工窗口的机制。结果表明,快速升温(>300 °C/min)促进了NA团簇的逆转,抑制了溶质的再沉淀,从而提高了热成形性能。在240 °C以上的回火时效可以诱导粗η′/η相的形成,导致BH响应明显下降。考虑NA簇的反演和溶质的再沉淀,建立了基于物理的统一本构模型,以准确地预测raf过程中的强度演变和变形行为。通过对AA7075-T4合金板材的弯曲和拉伸试验,验证了在最大还原状态下的IRAF具有最佳的成形性能。这一发现启发了促进已有亚稳颗粒的逆转,以改善热成形性和成型后的时效硬化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating reversion ageing and forming of high-strength Al alloys: Principles and theoretical basis

Simultaneously improving the formability and post-formed strength of high-strength aluminum (Al) alloys, such as Al–Zn–Mg–Cu alloys, is essential in manufacturing complex-shaped panel components. The strict requirements on heat-treatment condition and high tooling costs limit the applications of current forming methods. A novel process called integrated reversion ageing and forming (IRAF) is proposed to form naturally aged (NA or T4 tempered) Al alloys. A principle-based concept analysis and systematic thermo-mechanical-metallurgical study of the IRAF process were performed. Additionally, tensile tests were conducted to evaluate the effects of parameters including heating rate, holding time, and forming temperature on formability and baked strength. The deformability of the AA7075-T4 alloy can be significantly enhanced through rapid heating to the reversion ageing temperature (150–300 °C), followed by short-term holding, as evidenced by the reduced yield strength of 200 MPa and increased uniform ductility. An instant strength increase to a value close to that of the T6 state was obtained after a short bake hardening (BH) treatment. Further, temperature-time-property (TTP) diagrams were established based on the correlation between the measured mechanical properties and through-process microstructure evolution to explain the mechanism underlying the optimised processing window of IRAF. The results indicate that fast-heating rate (>300 °C/min) promotes the reversion of NA clusters and inhibits re-precipitation of solutes, thereby improving the warm formability. Reversion ageing above 240 °C could induce the formation of coarse η'/η phases, leading to a considerably declined BH response. To accurately predict the strength evolution and deformation behavior during IRAF, a physical-based unified constitutive model was constructed by considering the reversion of NA clusters and solute re-precipitation. The bending and drawing tests on the AA7075-T4 alloy sheets verified that IRAF in the most-reverted state enabled optimum formability. The findings inspire promoting the reversion of pre-existing metastable particles to improve warm formability and post-formed age hardening.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.70
自引率
10.00%
发文量
66
审稿时长
18 days
期刊介绍: The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics: - Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms. - Significant scientific advancements in existing or new processes and machines. - In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes. - Tool design, utilization, and comprehensive studies of failure mechanisms. - Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope. - Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes. - Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools"). - Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).
期刊最新文献
Editorial Board Combining in situ synchrotron X-ray imaging and multiphysics simulation to reveal pore formation dynamics in laser welding of copper A distinctive material removal mechanism in the diamond grinding of (0001)-oriented single crystal gallium nitride and its implications in substrate manufacturing of brittle materials Strengthening flat-die friction self-pierce riveting joints via manipulating stir zone geometry by tailored rivet structures A novel method of induction electrode through-mask electrochemical micromachining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1