Shuyi Li MSc , Qian Yuan MSc , Minghui Yang BSc , Xinyi Long BSc , Jianwu Sun MSc , Xin Yuan BSc , Lang Liu BSc , Wanting Zhang BSc , Quanjiang Li BSc , Zhujie Deng BSc , Rui Tian BSc , Renhao Xu BSc , Lingna Xie MSc , Jingna Yuan BSc , Yue He MD , Yi Liu MD , Hongmei Liu MD , Zhengqiang Yuan PhD
{"title":"海藻酸-透明质酸水凝胶结合淫羊藿苷和间充质干细胞来源的细胞外囊泡促进软骨再生。","authors":"Shuyi Li MSc , Qian Yuan MSc , Minghui Yang BSc , Xinyi Long BSc , Jianwu Sun MSc , Xin Yuan BSc , Lang Liu BSc , Wanting Zhang BSc , Quanjiang Li BSc , Zhujie Deng BSc , Rui Tian BSc , Renhao Xu BSc , Lingna Xie MSc , Jingna Yuan BSc , Yue He MD , Yi Liu MD , Hongmei Liu MD , Zhengqiang Yuan PhD","doi":"10.1016/j.nano.2023.102723","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p><span>Osteoarthritis<span> (OA) is characterized by progressive cartilage degeneration and absence of curative therapies. Therefore, more efficient therapies are compellingly needed. Both </span></span>mesenchymal stem cells<span> (MSCs)-derived extracellular vesicles (EVs) and Icariin (ICA) are promising for repair of cartilage defect. This study proposes that ICA may be combined to potentiate the cartilage repair capacity of MSC-EVs.</span></p></div><div><h3>Materials and methods</h3><p><span>MSC-EVs were isolated from sodium alginate<span> (SA) and hyaluronic acid (HA) </span></span>composite hydrogel<span> (SA-HA) cell spheroid culture. EVs and ICA were combined in SA-HA hydrogel to test therapeutic efficacy on cartilage defect in vivo.</span></p></div><div><h3>Results</h3><p>EVs and ICA were synergistic for promoting both proliferation and migration of MSCs and inflammatory chondrocytes. The combination therapy led to strikingly enhanced repair on cartilage defect in rats, with mechanisms involved in the concomitant modulation of both cartilage degradation and synthesis makers.</p></div><div><h3>Conclusion</h3><p>The MSC-EVs-ICA/SA-HA hydrogel potentially constitutes a novel therapy for cartilage defect in OA.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced cartilage regeneration by icariin and mesenchymal stem cell-derived extracellular vesicles combined in alginate-hyaluronic acid hydrogel\",\"authors\":\"Shuyi Li MSc , Qian Yuan MSc , Minghui Yang BSc , Xinyi Long BSc , Jianwu Sun MSc , Xin Yuan BSc , Lang Liu BSc , Wanting Zhang BSc , Quanjiang Li BSc , Zhujie Deng BSc , Rui Tian BSc , Renhao Xu BSc , Lingna Xie MSc , Jingna Yuan BSc , Yue He MD , Yi Liu MD , Hongmei Liu MD , Zhengqiang Yuan PhD\",\"doi\":\"10.1016/j.nano.2023.102723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p><span>Osteoarthritis<span> (OA) is characterized by progressive cartilage degeneration and absence of curative therapies. Therefore, more efficient therapies are compellingly needed. Both </span></span>mesenchymal stem cells<span> (MSCs)-derived extracellular vesicles (EVs) and Icariin (ICA) are promising for repair of cartilage defect. This study proposes that ICA may be combined to potentiate the cartilage repair capacity of MSC-EVs.</span></p></div><div><h3>Materials and methods</h3><p><span>MSC-EVs were isolated from sodium alginate<span> (SA) and hyaluronic acid (HA) </span></span>composite hydrogel<span> (SA-HA) cell spheroid culture. EVs and ICA were combined in SA-HA hydrogel to test therapeutic efficacy on cartilage defect in vivo.</span></p></div><div><h3>Results</h3><p>EVs and ICA were synergistic for promoting both proliferation and migration of MSCs and inflammatory chondrocytes. The combination therapy led to strikingly enhanced repair on cartilage defect in rats, with mechanisms involved in the concomitant modulation of both cartilage degradation and synthesis makers.</p></div><div><h3>Conclusion</h3><p>The MSC-EVs-ICA/SA-HA hydrogel potentially constitutes a novel therapy for cartilage defect in OA.</p></div>\",\"PeriodicalId\":19050,\"journal\":{\"name\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963423000746\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963423000746","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
目的:骨关节炎(OA)的特点是进行性软骨变性和缺乏根治性治疗。因此,迫切需要更有效的治疗方法。间充质干细胞(MSCs)衍生的细胞外囊泡(EVs)和淫羊藿苷(ICA)在软骨缺损的修复中都有很好的应用前景。本研究提出ICA可能联合增强msc - ev的软骨修复能力。材料和方法:从海藻酸钠(SA)和透明质酸(HA)复合水凝胶(SA-HA)细胞球体培养中分离出msc - ev。采用SA-HA水凝胶联合ev和ICA,观察其对软骨缺损的体内治疗效果。结果:EVs和ICA在促进MSCs和炎性软骨细胞增殖和迁移方面具有协同作用。联合治疗显著增强了大鼠软骨缺损的修复,其机制涉及软骨降解和合成因子的伴随调节。结论:msc - ev - ica /SA-HA水凝胶是一种治疗骨性关节炎软骨缺损的新方法。
Enhanced cartilage regeneration by icariin and mesenchymal stem cell-derived extracellular vesicles combined in alginate-hyaluronic acid hydrogel
Objective
Osteoarthritis (OA) is characterized by progressive cartilage degeneration and absence of curative therapies. Therefore, more efficient therapies are compellingly needed. Both mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) and Icariin (ICA) are promising for repair of cartilage defect. This study proposes that ICA may be combined to potentiate the cartilage repair capacity of MSC-EVs.
Materials and methods
MSC-EVs were isolated from sodium alginate (SA) and hyaluronic acid (HA) composite hydrogel (SA-HA) cell spheroid culture. EVs and ICA were combined in SA-HA hydrogel to test therapeutic efficacy on cartilage defect in vivo.
Results
EVs and ICA were synergistic for promoting both proliferation and migration of MSCs and inflammatory chondrocytes. The combination therapy led to strikingly enhanced repair on cartilage defect in rats, with mechanisms involved in the concomitant modulation of both cartilage degradation and synthesis makers.
Conclusion
The MSC-EVs-ICA/SA-HA hydrogel potentially constitutes a novel therapy for cartilage defect in OA.
期刊介绍:
The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine.
Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.