肠屏障功能与神经退行性疾病。

Shijing Wu, Liangfang Yang, Yiwei Fu, Zhimin Liao, De Cai, Zhou Liu
{"title":"肠屏障功能与神经退行性疾病。","authors":"Shijing Wu, Liangfang Yang, Yiwei Fu, Zhimin Liao, De Cai, Zhou Liu","doi":"10.2174/0118715273264097231116103948","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases are caused by the loss of neurons and/or their myelin sheaths, which deteriorate over time and become dysfunctional. Alzheimer's disease, Parkinson's disease, and multiple sclerosis are among the most prominent neurodegenerative diseases that affect millions of older adults worldwide. Despite extensive research over several decades, controversies still surround the etiology of neurodegenerative diseases, and many of them remain incurable. Meanwhile, an increasing number of new mechanistic studies related to the microbiota-gut-brain axis have emerged, among which the relationship between the function of the intestinal barrier and neurodegenerative diseases has received widespread attention. As one of the first lines of defense between the body and the external environment, the impaired function of the intestinal barrier is closely related to the development of neurodegenerative pathologies. Among them, the microbiota-gut-brain axis disorder characterized by intestinal barrier disruption mainly includes impaired function of the intestinal microbial barrier, chemical barrier, mechanical barrier, and immune barrier. This review focuses on the structure and molecular mechanisms of the various layers of the intestinal barrier as well as their relationship with neurodegenerative lesions. In recent years, intestinal barrier repair therapies have provided new ideas for the studied disease treatment modalities. We believe that a better understanding of the role of the intestinal barrier in neurodegenerative diseases would provide new insights for the development of viable therapeutic strategies for patients.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"1134-1142"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intestinal Barrier Function and Neurodegenerative Disease.\",\"authors\":\"Shijing Wu, Liangfang Yang, Yiwei Fu, Zhimin Liao, De Cai, Zhou Liu\",\"doi\":\"10.2174/0118715273264097231116103948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurodegenerative diseases are caused by the loss of neurons and/or their myelin sheaths, which deteriorate over time and become dysfunctional. Alzheimer's disease, Parkinson's disease, and multiple sclerosis are among the most prominent neurodegenerative diseases that affect millions of older adults worldwide. Despite extensive research over several decades, controversies still surround the etiology of neurodegenerative diseases, and many of them remain incurable. Meanwhile, an increasing number of new mechanistic studies related to the microbiota-gut-brain axis have emerged, among which the relationship between the function of the intestinal barrier and neurodegenerative diseases has received widespread attention. As one of the first lines of defense between the body and the external environment, the impaired function of the intestinal barrier is closely related to the development of neurodegenerative pathologies. Among them, the microbiota-gut-brain axis disorder characterized by intestinal barrier disruption mainly includes impaired function of the intestinal microbial barrier, chemical barrier, mechanical barrier, and immune barrier. This review focuses on the structure and molecular mechanisms of the various layers of the intestinal barrier as well as their relationship with neurodegenerative lesions. In recent years, intestinal barrier repair therapies have provided new ideas for the studied disease treatment modalities. We believe that a better understanding of the role of the intestinal barrier in neurodegenerative diseases would provide new insights for the development of viable therapeutic strategies for patients.</p>\",\"PeriodicalId\":93947,\"journal\":{\"name\":\"CNS & neurological disorders drug targets\",\"volume\":\" \",\"pages\":\"1134-1142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CNS & neurological disorders drug targets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0118715273264097231116103948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS & neurological disorders drug targets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715273264097231116103948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经退行性疾病是由神经元和/或髓鞘的丧失引起的,随着时间的推移,髓鞘会恶化并变得功能失调。阿尔茨海默病、帕金森病和多发性硬化症是影响全世界数百万老年人的最突出的神经退行性疾病。尽管几十年来进行了广泛的研究,但围绕神经退行性疾病的病因仍然存在争议,其中许多疾病仍然无法治愈。与此同时,越来越多与微生物-肠-脑轴相关的新的机制研究出现,其中肠屏障功能与神经退行性疾病的关系受到广泛关注。肠屏障作为机体与外界环境之间的第一道防线之一,其功能受损与神经退行性病变的发生密切相关。其中以肠道屏障破坏为特征的微生物-肠-脑轴紊乱主要包括肠道微生物屏障、化学屏障、机械屏障和免疫屏障功能受损。本文就肠屏障各层的结构、分子机制及其与神经退行性病变的关系作一综述。近年来,肠屏障修复疗法为所研究的疾病治疗方式提供了新的思路。我们相信,更好地了解肠屏障在神经退行性疾病中的作用,将为患者开发可行的治疗策略提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intestinal Barrier Function and Neurodegenerative Disease.

Neurodegenerative diseases are caused by the loss of neurons and/or their myelin sheaths, which deteriorate over time and become dysfunctional. Alzheimer's disease, Parkinson's disease, and multiple sclerosis are among the most prominent neurodegenerative diseases that affect millions of older adults worldwide. Despite extensive research over several decades, controversies still surround the etiology of neurodegenerative diseases, and many of them remain incurable. Meanwhile, an increasing number of new mechanistic studies related to the microbiota-gut-brain axis have emerged, among which the relationship between the function of the intestinal barrier and neurodegenerative diseases has received widespread attention. As one of the first lines of defense between the body and the external environment, the impaired function of the intestinal barrier is closely related to the development of neurodegenerative pathologies. Among them, the microbiota-gut-brain axis disorder characterized by intestinal barrier disruption mainly includes impaired function of the intestinal microbial barrier, chemical barrier, mechanical barrier, and immune barrier. This review focuses on the structure and molecular mechanisms of the various layers of the intestinal barrier as well as their relationship with neurodegenerative lesions. In recent years, intestinal barrier repair therapies have provided new ideas for the studied disease treatment modalities. We believe that a better understanding of the role of the intestinal barrier in neurodegenerative diseases would provide new insights for the development of viable therapeutic strategies for patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parkinson's Disease: Unravelling the Medicinal Perspectives and Recent Developments of Heterocyclic Monoamine Oxidase-B Inhibitors. Enhanced Neuroprotection in Experiment Multiple Sclerosis through Combined Rosiglitazone and Probiotic-Loaded Solid Lipid Nanoparticles: Modulation of Cellular Signaling Pathways. Parkinson's Disease: A Progressive Neurodegenerative Disorder and Structure-Activity Relationship of MAO Inhibitor Scaffolds as an Important Therapeutic Regimen. Exploring Therapeutic Strategies: The Relationship between Metabolic Disorders and FOXO Signalling in Alzheimer's Disease. Proposed Hypothesis of TWEAK/Fn14 Receptor Modulation in Autism Spectrum Disorder.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1