羰基催化大环化合成平面手性吲哚。

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2023-11-28 DOI:10.1002/anie.202316739
Dr. Gongming Yang, Yi He, Tianyi Wang, Zhipeng Li, Prof. Dr. Jian Wang
{"title":"羰基催化大环化合成平面手性吲哚。","authors":"Dr. Gongming Yang,&nbsp;Yi He,&nbsp;Tianyi Wang,&nbsp;Zhipeng Li,&nbsp;Prof. Dr. Jian Wang","doi":"10.1002/anie.202316739","DOIUrl":null,"url":null,"abstract":"<p>Indole-based planar-chiral macrocycles are widely found in natural products and bioactive molecules. However, in sharp contrast to the preparation of indole-based axially chiral structures, the enantioselective catalysis of indole-based planar-chiral macrocycles is still a formidable task so far. Here we report an <i>N</i>-heterocyclic carbene (NHC)-catalyzed intramolecular atroposelective macrocyclization of 3-carboxaldehyde indole/pyrroles, featuring with broad substrate scope and good functional group tolerance, and allowing for a rapid access to diverse indole/pyrrole-based planar-chiral macrocycles with various tether-lengths (10–16 members) in good yields and with excellent enantioselectivities. Importantly, the indole-based macrocyclic structures with both planar and axial chirality were directly and efficiently obtained through this protocol with excellent enantioselectivities and diastereoselectivities. In addition, these synthesized planar-chiral macrocycles offer many possibilities for chemists to develop new catalysts or ligands, as well as new reactions.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atroposelective Synthesis of Planar-Chiral Indoles via Carbene Catalyzed Macrocyclization\",\"authors\":\"Dr. Gongming Yang,&nbsp;Yi He,&nbsp;Tianyi Wang,&nbsp;Zhipeng Li,&nbsp;Prof. Dr. Jian Wang\",\"doi\":\"10.1002/anie.202316739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Indole-based planar-chiral macrocycles are widely found in natural products and bioactive molecules. However, in sharp contrast to the preparation of indole-based axially chiral structures, the enantioselective catalysis of indole-based planar-chiral macrocycles is still a formidable task so far. Here we report an <i>N</i>-heterocyclic carbene (NHC)-catalyzed intramolecular atroposelective macrocyclization of 3-carboxaldehyde indole/pyrroles, featuring with broad substrate scope and good functional group tolerance, and allowing for a rapid access to diverse indole/pyrrole-based planar-chiral macrocycles with various tether-lengths (10–16 members) in good yields and with excellent enantioselectivities. Importantly, the indole-based macrocyclic structures with both planar and axial chirality were directly and efficiently obtained through this protocol with excellent enantioselectivities and diastereoselectivities. In addition, these synthesized planar-chiral macrocycles offer many possibilities for chemists to develop new catalysts or ligands, as well as new reactions.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202316739\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202316739","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

吲哚基平面手性大环广泛存在于天然产物和生物活性分子中。然而,与吲哚基轴向手性结构的制备形成鲜明对比的是,吲哚基平面手性大环的对映选择性催化至今仍是一项艰巨的任务。本文报道了一种n -杂环羰基(NHC)催化的3-甲醛吲哚/吡咯分子内逆选择性大环化反应,该反应具有底物范围广和良好的官能团耐受性,可以快速获得多种基于吲哚/吡咯的平面手性大环,具有各种环大小(10-16个成员),产率高,对映选择性好。重要的是,通过该方法可以直接有效地获得具有平面手性和轴向手性的吲哚基大环结构,具有良好的对映选择性和非对映选择性。此外,这些合成的平面手性大环为化学家开发新的催化剂或配体以及新的反应提供了许多可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atroposelective Synthesis of Planar-Chiral Indoles via Carbene Catalyzed Macrocyclization

Indole-based planar-chiral macrocycles are widely found in natural products and bioactive molecules. However, in sharp contrast to the preparation of indole-based axially chiral structures, the enantioselective catalysis of indole-based planar-chiral macrocycles is still a formidable task so far. Here we report an N-heterocyclic carbene (NHC)-catalyzed intramolecular atroposelective macrocyclization of 3-carboxaldehyde indole/pyrroles, featuring with broad substrate scope and good functional group tolerance, and allowing for a rapid access to diverse indole/pyrrole-based planar-chiral macrocycles with various tether-lengths (10–16 members) in good yields and with excellent enantioselectivities. Importantly, the indole-based macrocyclic structures with both planar and axial chirality were directly and efficiently obtained through this protocol with excellent enantioselectivities and diastereoselectivities. In addition, these synthesized planar-chiral macrocycles offer many possibilities for chemists to develop new catalysts or ligands, as well as new reactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
European Respiratory Society guidelines for the diagnosis and management of pulmonary alveolar proteinosis. Impact of the expanded label for elexacaftor/tezacaftor/ivacaftor in people with cystic fibrosis with no F508del variant in the USA. Determination of loss of chromosome Y in peripheral blood cells in males with idiopathic pulmonary fibrosis. ERJ advances: epigenetic ageing and leveraging DNA methylation in chronic respiratory diseases. One-Step Esterification of Phosphoric, Phosphonic and Phosphinic Acids with Organosilicates: Phosphorus Chemical Recycling of Sewage Waste
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1