{"title":"迈伦戈登奖讲座2023:绘画神经嵴:如何研究色素细胞照亮神经嵴细胞生物学。","authors":"Robert N. Kelsh","doi":"10.1111/pcmr.13147","DOIUrl":null,"url":null,"abstract":"<p>It has been 30 (!!) years since I began working on zebrafish pigment cells, as a postdoc in the laboratory of Prof. Christiane Nüsslein-Volhard. There, I participated in the first large-scale mutagenesis screen in zebrafish, focusing on pigment cell mutant phenotypes. The isolation of <i>colourless</i>, <i>shady</i>, <i>parade</i> and <i>choker</i> mutants allowed us (as a postdoc in Prof. Judith Eisen's laboratory, and then in my own laboratory at the University of Bath since 1997) to pursue my ambition to address long-standing problems in the neural crest field. Thus, we have studied how neural crest cells choose individual fates, resulting in our recent proposal of a new, and potentially unifying, model which we call Cyclical Fate Restriction, as well as addressing how pigment cell patterns are generated. A key feature of our work in the last 10 years has been the use of mathematical modelling approaches to clarify our biological models and to refine our interpretations. None of this would have been possible without a hugely talented group of laboratory members and other collaborators from around the world—it has been, and I am sure will continue to be, a pleasure and privilege to work with you all!</p>","PeriodicalId":219,"journal":{"name":"Pigment Cell & Melanoma Research","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pcmr.13147","citationCount":"0","resultStr":"{\"title\":\"Myron Gordon Award Lecture 2023: Painting the neural crest: How studying pigment cells illuminates neural crest cell biology\",\"authors\":\"Robert N. Kelsh\",\"doi\":\"10.1111/pcmr.13147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It has been 30 (!!) years since I began working on zebrafish pigment cells, as a postdoc in the laboratory of Prof. Christiane Nüsslein-Volhard. There, I participated in the first large-scale mutagenesis screen in zebrafish, focusing on pigment cell mutant phenotypes. The isolation of <i>colourless</i>, <i>shady</i>, <i>parade</i> and <i>choker</i> mutants allowed us (as a postdoc in Prof. Judith Eisen's laboratory, and then in my own laboratory at the University of Bath since 1997) to pursue my ambition to address long-standing problems in the neural crest field. Thus, we have studied how neural crest cells choose individual fates, resulting in our recent proposal of a new, and potentially unifying, model which we call Cyclical Fate Restriction, as well as addressing how pigment cell patterns are generated. A key feature of our work in the last 10 years has been the use of mathematical modelling approaches to clarify our biological models and to refine our interpretations. None of this would have been possible without a hugely talented group of laboratory members and other collaborators from around the world—it has been, and I am sure will continue to be, a pleasure and privilege to work with you all!</p>\",\"PeriodicalId\":219,\"journal\":{\"name\":\"Pigment Cell & Melanoma Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pcmr.13147\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pigment Cell & Melanoma Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/pcmr.13147\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pigment Cell & Melanoma Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/pcmr.13147","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
自从我在Christiane n sslein- volhard教授的实验室做博士后开始研究斑马鱼色素细胞以来,已经有30年了。在那里,我参与了斑马鱼的第一次大规模诱变筛选,重点是色素细胞突变表型。对无色、暗色、游行和颈链突变体的隔离使我们(作为朱迪思·艾森教授实验室的博士后,然后从1997年开始在巴斯大学我自己的实验室)能够追求我的抱负,解决神经嵴领域的长期问题。因此,我们研究了神经嵴细胞如何选择个体命运,导致我们最近提出了一个新的,潜在的统一模型,我们称之为周期性命运限制,以及解决色素细胞模式是如何产生的。在过去十年中,我们工作的一个关键特征是使用数学建模方法来澄清我们的生物模型并改进我们的解释。如果没有一群才华横溢的实验室成员和来自世界各地的其他合作者,这一切都不可能实现——我相信,与你们所有人一起工作是一种快乐和荣幸!
Myron Gordon Award Lecture 2023: Painting the neural crest: How studying pigment cells illuminates neural crest cell biology
It has been 30 (!!) years since I began working on zebrafish pigment cells, as a postdoc in the laboratory of Prof. Christiane Nüsslein-Volhard. There, I participated in the first large-scale mutagenesis screen in zebrafish, focusing on pigment cell mutant phenotypes. The isolation of colourless, shady, parade and choker mutants allowed us (as a postdoc in Prof. Judith Eisen's laboratory, and then in my own laboratory at the University of Bath since 1997) to pursue my ambition to address long-standing problems in the neural crest field. Thus, we have studied how neural crest cells choose individual fates, resulting in our recent proposal of a new, and potentially unifying, model which we call Cyclical Fate Restriction, as well as addressing how pigment cell patterns are generated. A key feature of our work in the last 10 years has been the use of mathematical modelling approaches to clarify our biological models and to refine our interpretations. None of this would have been possible without a hugely talented group of laboratory members and other collaborators from around the world—it has been, and I am sure will continue to be, a pleasure and privilege to work with you all!
期刊介绍:
Pigment Cell & Melanoma Researchpublishes manuscripts on all aspects of pigment cells including development, cell and molecular biology, genetics, diseases of pigment cells including melanoma. Papers that provide insights into the causes and progression of melanoma including the process of metastasis and invasion, proliferation, senescence, apoptosis or gene regulation are especially welcome, as are papers that use the melanocyte system to answer questions of general biological relevance. Papers that are purely descriptive or make only minor advances to our knowledge of pigment cells or melanoma in particular are not suitable for this journal. Keywords
Pigment Cell & Melanoma Research, cell biology, melatonin, biochemistry, chemistry, comparative biology, dermatology, developmental biology, genetics, hormones, intracellular signalling, melanoma, molecular biology, ocular and extracutaneous melanin, pharmacology, photobiology, physics, pigmentary disorders