Sadhana R N Sudhakar, Li Wu, Shrinal Patel, Athanasios Zovoilis, James R Davie
{"title":"组蛋白H4在精氨酸3 (H4R3me2a)处不对称二甲基化,这是超级增强子的标志。","authors":"Sadhana R N Sudhakar, Li Wu, Shrinal Patel, Athanasios Zovoilis, James R Davie","doi":"10.1139/bcb-2023-0211","DOIUrl":null,"url":null,"abstract":"<p><p>Histone H4 asymmetrically dimethylated at arginine 3 (H4R3me2a) is an active histone mark catalyzed by protein arginine methyltransferase 1 (PRMT1), a major arginine methyltransferase in vertebrates catalyzing asymmetric dimethylation of arginine. H4R3me2a stimulates the activity of lysine acetyltransferases such as CBP/p300, which catalyze the acetylation of H3K27, a mark of active enhancers, super-enhancers, and promoters. There are a few studies on the genomic location of H4R3me2a. In chicken polychromatic erythrocytes, H4R3me2a is found in introns and intergenic regions and binds to the globin locus control region (a super-enhancer) and globin regulatory regions. In this report, we analyzed chromatin immunoprecipitation sequencing data for the genomic location of H4R3me2a in the breast cancer cell line MCF7. As in avian cells, MCF7 H4R3me2a is present in intronic and intergenic regions. Nucleosomes with H4R3me2a and H3K27ac next to nucleosome-free regions are found at super-enhancers, enhancers, and promoter regions of expressed genes. Genes with critical roles in breast cancer cells have broad domains of nucleosomes with H4R3me2a, H3K27ac, and H3K4me3. Our results are consistent with PRMT1-mediated H4R3me2a playing a key role in the chromatin organization of regulatory regions of vertebrate genomes.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Histone H4 asymmetrically dimethylated at arginine 3 (H4R3me2a), a mark of super-enhancers.\",\"authors\":\"Sadhana R N Sudhakar, Li Wu, Shrinal Patel, Athanasios Zovoilis, James R Davie\",\"doi\":\"10.1139/bcb-2023-0211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Histone H4 asymmetrically dimethylated at arginine 3 (H4R3me2a) is an active histone mark catalyzed by protein arginine methyltransferase 1 (PRMT1), a major arginine methyltransferase in vertebrates catalyzing asymmetric dimethylation of arginine. H4R3me2a stimulates the activity of lysine acetyltransferases such as CBP/p300, which catalyze the acetylation of H3K27, a mark of active enhancers, super-enhancers, and promoters. There are a few studies on the genomic location of H4R3me2a. In chicken polychromatic erythrocytes, H4R3me2a is found in introns and intergenic regions and binds to the globin locus control region (a super-enhancer) and globin regulatory regions. In this report, we analyzed chromatin immunoprecipitation sequencing data for the genomic location of H4R3me2a in the breast cancer cell line MCF7. As in avian cells, MCF7 H4R3me2a is present in intronic and intergenic regions. Nucleosomes with H4R3me2a and H3K27ac next to nucleosome-free regions are found at super-enhancers, enhancers, and promoter regions of expressed genes. Genes with critical roles in breast cancer cells have broad domains of nucleosomes with H4R3me2a, H3K27ac, and H3K4me3. Our results are consistent with PRMT1-mediated H4R3me2a playing a key role in the chromatin organization of regulatory regions of vertebrate genomes.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/bcb-2023-0211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/bcb-2023-0211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Histone H4 asymmetrically dimethylated at arginine 3 (H4R3me2a), a mark of super-enhancers.
Histone H4 asymmetrically dimethylated at arginine 3 (H4R3me2a) is an active histone mark catalyzed by protein arginine methyltransferase 1 (PRMT1), a major arginine methyltransferase in vertebrates catalyzing asymmetric dimethylation of arginine. H4R3me2a stimulates the activity of lysine acetyltransferases such as CBP/p300, which catalyze the acetylation of H3K27, a mark of active enhancers, super-enhancers, and promoters. There are a few studies on the genomic location of H4R3me2a. In chicken polychromatic erythrocytes, H4R3me2a is found in introns and intergenic regions and binds to the globin locus control region (a super-enhancer) and globin regulatory regions. In this report, we analyzed chromatin immunoprecipitation sequencing data for the genomic location of H4R3me2a in the breast cancer cell line MCF7. As in avian cells, MCF7 H4R3me2a is present in intronic and intergenic regions. Nucleosomes with H4R3me2a and H3K27ac next to nucleosome-free regions are found at super-enhancers, enhancers, and promoter regions of expressed genes. Genes with critical roles in breast cancer cells have broad domains of nucleosomes with H4R3me2a, H3K27ac, and H3K4me3. Our results are consistent with PRMT1-mediated H4R3me2a playing a key role in the chromatin organization of regulatory regions of vertebrate genomes.