{"title":"YAP/TAZ在血管机械转导和疾病中的新作用。","authors":"Olivia Ritsvall, Sebastian Albinsson","doi":"10.1111/micc.12838","DOIUrl":null,"url":null,"abstract":"<p>Cells have an incredible ability to physically interact with neighboring cells and their environment. They can detect and respond to mechanical forces by converting mechanical stimuli into biochemical signals in a process known as mechanotransduction. This is a key process for the adaption of vascular smooth muscle and endothelial cells to altered flow and pressure conditions. Mechanical stimuli, referring to a physical force exerted on cells, are primarily sensed by transmembrane proteins and the actin cytoskeleton, which initiate a cascade of intracellular events, including the activation of signaling pathways, ion channels, and transcriptional regulators. Recent work has highlighted an important role of the transcriptional coactivators YAP/TAZ for mechanotransduction in vascular cells. Interestingly, the activity of YAP/TAZ decreases with age, providing a potential mechanism for the detrimental effects of aging in the vascular wall. In this review, we summarize the current knowledge on the functional role of YAP and TAZ in vascular endothelial and smooth muscle cells for mechanotransduction in homeostasis and disease. In particular, the review is focused on in vivo observations from conditional knockout (KO) models of YAP/TAZ and the potential implications these studies may have for our understanding of vascular disease development.</p>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":"31 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/micc.12838","citationCount":"0","resultStr":"{\"title\":\"Emerging role of YAP/TAZ in vascular mechanotransduction and disease\",\"authors\":\"Olivia Ritsvall, Sebastian Albinsson\",\"doi\":\"10.1111/micc.12838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cells have an incredible ability to physically interact with neighboring cells and their environment. They can detect and respond to mechanical forces by converting mechanical stimuli into biochemical signals in a process known as mechanotransduction. This is a key process for the adaption of vascular smooth muscle and endothelial cells to altered flow and pressure conditions. Mechanical stimuli, referring to a physical force exerted on cells, are primarily sensed by transmembrane proteins and the actin cytoskeleton, which initiate a cascade of intracellular events, including the activation of signaling pathways, ion channels, and transcriptional regulators. Recent work has highlighted an important role of the transcriptional coactivators YAP/TAZ for mechanotransduction in vascular cells. Interestingly, the activity of YAP/TAZ decreases with age, providing a potential mechanism for the detrimental effects of aging in the vascular wall. In this review, we summarize the current knowledge on the functional role of YAP and TAZ in vascular endothelial and smooth muscle cells for mechanotransduction in homeostasis and disease. In particular, the review is focused on in vivo observations from conditional knockout (KO) models of YAP/TAZ and the potential implications these studies may have for our understanding of vascular disease development.</p>\",\"PeriodicalId\":18459,\"journal\":{\"name\":\"Microcirculation\",\"volume\":\"31 4\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/micc.12838\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microcirculation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/micc.12838\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microcirculation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/micc.12838","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Emerging role of YAP/TAZ in vascular mechanotransduction and disease
Cells have an incredible ability to physically interact with neighboring cells and their environment. They can detect and respond to mechanical forces by converting mechanical stimuli into biochemical signals in a process known as mechanotransduction. This is a key process for the adaption of vascular smooth muscle and endothelial cells to altered flow and pressure conditions. Mechanical stimuli, referring to a physical force exerted on cells, are primarily sensed by transmembrane proteins and the actin cytoskeleton, which initiate a cascade of intracellular events, including the activation of signaling pathways, ion channels, and transcriptional regulators. Recent work has highlighted an important role of the transcriptional coactivators YAP/TAZ for mechanotransduction in vascular cells. Interestingly, the activity of YAP/TAZ decreases with age, providing a potential mechanism for the detrimental effects of aging in the vascular wall. In this review, we summarize the current knowledge on the functional role of YAP and TAZ in vascular endothelial and smooth muscle cells for mechanotransduction in homeostasis and disease. In particular, the review is focused on in vivo observations from conditional knockout (KO) models of YAP/TAZ and the potential implications these studies may have for our understanding of vascular disease development.
期刊介绍:
The journal features original contributions that are the result of investigations contributing significant new information relating to the vascular and lymphatic microcirculation addressed at the intact animal, organ, cellular, or molecular level. Papers describe applications of the methods of physiology, biophysics, bioengineering, genetics, cell biology, biochemistry, and molecular biology to problems in microcirculation.
Microcirculation also publishes state-of-the-art reviews that address frontier areas or new advances in technology in the fields of microcirculatory disease and function. Specific areas of interest include: Angiogenesis, growth and remodeling; Transport and exchange of gasses and solutes; Rheology and biorheology; Endothelial cell biology and metabolism; Interactions between endothelium, smooth muscle, parenchymal cells, leukocytes and platelets; Regulation of vasomotor tone; and Microvascular structures, imaging and morphometry. Papers also describe innovations in experimental techniques and instrumentation for studying all aspects of microcirculatory structure and function.