Gaia Gavioli, Agnese Razzoli, Diana E Bedolla, Erminia Di Bartolomeo, Eleonora Quartieri, Barbara Iotti, Pamela Berni, Giovanni Birarda, Lisa Vaccari, Davide Schiroli, Chiara Marraccini, Roberto Baricchi, Lucia Merolle
{"title":"低温保存对解冻后血小板大分子组成的影响以及对体外癌细胞行为的不同影响。","authors":"Gaia Gavioli, Agnese Razzoli, Diana E Bedolla, Erminia Di Bartolomeo, Eleonora Quartieri, Barbara Iotti, Pamela Berni, Giovanni Birarda, Lisa Vaccari, Davide Schiroli, Chiara Marraccini, Roberto Baricchi, Lucia Merolle","doi":"10.1080/09537104.2023.2281943","DOIUrl":null,"url":null,"abstract":"<p><p>Cryopreservation affects platelets' function, questioning their use for cancer patients. We aimed to investigate the biochemical events that occur over time after thawing to optimize transfusion timing and evaluate the effect of platelet supernatants on tumor cell behavior <i>in vitro</i>. We compared fresh (Fresh-PLT) with Cryopreserved platelets (Cryo-PLT) at 1 h, 3 h and 6 h after thawing. MCF-7 and HL-60 cells were cultured with Fresh- or 1 h Cryo-PLT supernatants to investigate cell proliferation, migration, and PLT-cell adhesion. We noticed a significant impairment of hemostatic activity accompanied by a post-thaw decrease of CD42b<sup>+</sup> , which identifies the CD62P<sup>-</sup>-population. FTIR spectroscopy revealed a decrease in the total protein content together with changes in their conformational structure, which identified two sub-groups: 1) Fresh and 1 h Cryo-PLT; 2) 3 h and 6 h cryo-PLT. Extracellular vesicle shedding and phosphatidylserine externalization (PS) increased after thawing. Cryo-PLT supernatants inhibited cell proliferation, impaired MCF-7 cell migration, and reduced ability to adhere to tumor cells. Within the first 3 hours after thawing, irreversible alterations of biomolecular structure occur in Cryo-PLT. Nevertheless, Cryo-PLT should be considered safe for the transfusion of cancer patients because of their insufficient capability to promote cancer cell proliferation, adhesion, or migration.</p>","PeriodicalId":20268,"journal":{"name":"Platelets","volume":"34 1","pages":"2281943"},"PeriodicalIF":2.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryopreservation affects platelet macromolecular composition over time after thawing and differently impacts on cancer cells behavior in vitro.\",\"authors\":\"Gaia Gavioli, Agnese Razzoli, Diana E Bedolla, Erminia Di Bartolomeo, Eleonora Quartieri, Barbara Iotti, Pamela Berni, Giovanni Birarda, Lisa Vaccari, Davide Schiroli, Chiara Marraccini, Roberto Baricchi, Lucia Merolle\",\"doi\":\"10.1080/09537104.2023.2281943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cryopreservation affects platelets' function, questioning their use for cancer patients. We aimed to investigate the biochemical events that occur over time after thawing to optimize transfusion timing and evaluate the effect of platelet supernatants on tumor cell behavior <i>in vitro</i>. We compared fresh (Fresh-PLT) with Cryopreserved platelets (Cryo-PLT) at 1 h, 3 h and 6 h after thawing. MCF-7 and HL-60 cells were cultured with Fresh- or 1 h Cryo-PLT supernatants to investigate cell proliferation, migration, and PLT-cell adhesion. We noticed a significant impairment of hemostatic activity accompanied by a post-thaw decrease of CD42b<sup>+</sup> , which identifies the CD62P<sup>-</sup>-population. FTIR spectroscopy revealed a decrease in the total protein content together with changes in their conformational structure, which identified two sub-groups: 1) Fresh and 1 h Cryo-PLT; 2) 3 h and 6 h cryo-PLT. Extracellular vesicle shedding and phosphatidylserine externalization (PS) increased after thawing. Cryo-PLT supernatants inhibited cell proliferation, impaired MCF-7 cell migration, and reduced ability to adhere to tumor cells. Within the first 3 hours after thawing, irreversible alterations of biomolecular structure occur in Cryo-PLT. Nevertheless, Cryo-PLT should be considered safe for the transfusion of cancer patients because of their insufficient capability to promote cancer cell proliferation, adhesion, or migration.</p>\",\"PeriodicalId\":20268,\"journal\":{\"name\":\"Platelets\",\"volume\":\"34 1\",\"pages\":\"2281943\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Platelets\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/09537104.2023.2281943\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Platelets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09537104.2023.2281943","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
低温保存会影响血小板的功能,质疑其在癌症患者中的应用。我们的目的是研究解冻后发生的生化事件,以优化输血时机,并评估血小板上清液对体外肿瘤细胞行为的影响。我们在解冻后1小时、3小时和6小时比较新鲜血小板(fresh - plt)和冷冻血小板(Cryo-PLT)。MCF-7和HL-60细胞用Fresh或1 h冷冻plt上清液培养,观察细胞增殖、迁移和plt细胞粘附情况。我们注意到止血活性的显著损伤伴随着解冻后CD42b+的减少,这确定了CD62P-人群。FTIR光谱显示总蛋白含量降低,构象结构发生变化,可分为两个亚群:1)Fresh和1 h Cryo-PLT;2)冷冻plt 3 h和6 h。解冻后细胞外囊泡脱落和磷脂酰丝氨酸外化(PS)增加。Cryo-PLT上清液抑制细胞增殖,损害MCF-7细胞迁移,降低粘附肿瘤细胞的能力。在解冻后的前3小时内,冷冻plt的生物分子结构发生了不可逆的变化。尽管如此,对于癌症患者来说,由于其促进癌细胞增殖、粘附或迁移的能力不足,冷冻- plt应该被认为是安全的。
Cryopreservation affects platelet macromolecular composition over time after thawing and differently impacts on cancer cells behavior in vitro.
Cryopreservation affects platelets' function, questioning their use for cancer patients. We aimed to investigate the biochemical events that occur over time after thawing to optimize transfusion timing and evaluate the effect of platelet supernatants on tumor cell behavior in vitro. We compared fresh (Fresh-PLT) with Cryopreserved platelets (Cryo-PLT) at 1 h, 3 h and 6 h after thawing. MCF-7 and HL-60 cells were cultured with Fresh- or 1 h Cryo-PLT supernatants to investigate cell proliferation, migration, and PLT-cell adhesion. We noticed a significant impairment of hemostatic activity accompanied by a post-thaw decrease of CD42b+ , which identifies the CD62P--population. FTIR spectroscopy revealed a decrease in the total protein content together with changes in their conformational structure, which identified two sub-groups: 1) Fresh and 1 h Cryo-PLT; 2) 3 h and 6 h cryo-PLT. Extracellular vesicle shedding and phosphatidylserine externalization (PS) increased after thawing. Cryo-PLT supernatants inhibited cell proliferation, impaired MCF-7 cell migration, and reduced ability to adhere to tumor cells. Within the first 3 hours after thawing, irreversible alterations of biomolecular structure occur in Cryo-PLT. Nevertheless, Cryo-PLT should be considered safe for the transfusion of cancer patients because of their insufficient capability to promote cancer cell proliferation, adhesion, or migration.
期刊介绍:
Platelets is an international, peer-reviewed journal covering all aspects of platelet- and megakaryocyte-related research.
Platelets provides the opportunity for contributors and readers across scientific disciplines to engage with new information about blood platelets. The journal’s Methods section aims to improve standardization between laboratories and to help researchers replicate difficult methods.
Research areas include:
Platelet function
Biochemistry
Signal transduction
Pharmacology and therapeutics
Interaction with other cells in the blood vessel wall
The contribution of platelets and platelet-derived products to health and disease
The journal publishes original articles, fast-track articles, review articles, systematic reviews, methods papers, short communications, case reports, opinion articles, commentaries, gene of the issue, and letters to the editor.
Platelets operates a single-blind peer review policy. Authors can choose to publish gold open access in this journal.