{"title":"间充质干细胞球体冷冻保存介质的比较。","authors":"Jin Ju Park, Ok-Hee Lee, Jie-Eun Park, Jaejin Cho","doi":"10.1089/bio.2023.0057","DOIUrl":null,"url":null,"abstract":"<p><p>Multipotent mesenchymal stromal/stem cell (MSC) spheroids generated in three-dimensional culture are of considerable interest as a novel therapeutic tool for regenerative medicine. However, the lack of reliable methods for storing MSC spheroids represents a significant roadblock to their successful use in the clinic. An ideal storage medium for MSC spheroids should function as both a vehicle for delivery and a cryoprotectant during storage of spheroids for use at a later time. In this study, we compared the outcomes after subjecting MSC spheroids to a freeze/thaw cycle in three Good Manufacturing Practices-grade cryopreservation media, CryoStor10 (CS10), Stem-Cellbanker (SCB), and Recovery Cell Culture Freezing Media (RFM) or conventional freezing medium (CM) (CM, Dulbecco's modified Eagle's medium containing 20% fetal bovine serum and 10% dimethyl sulfoxide) as a control for 2 months. The endpoints tested were viability, morphology, and expression of stem cell markers and other relevant genes. The results of LIVE/DEAD™ assays and annexin V/propidium iodide staining suggested that viability was relatively higher after one freeze/thaw cycle in CS10 or SCB than after freeze/thaw in CM or RFM. Furthermore, the relative \"stemness\" and expression of MSC markers were similar with or without freeze/thaw in CS10. Scanning electron microscopy also indicated that the surface morphology of MSC spheroids was well preserved after cryopreservation in CS10. Thus, even though it was tested for a short-term period, we suggest that CS10, which has been approved for clinical use by the U.S. Food and Drug Association, is a promising cryopreservation medium that would facilitate the development of MSC spheroids for future clinical use.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Cryopreservation Media for Mesenchymal Stem Cell Spheroids.\",\"authors\":\"Jin Ju Park, Ok-Hee Lee, Jie-Eun Park, Jaejin Cho\",\"doi\":\"10.1089/bio.2023.0057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multipotent mesenchymal stromal/stem cell (MSC) spheroids generated in three-dimensional culture are of considerable interest as a novel therapeutic tool for regenerative medicine. However, the lack of reliable methods for storing MSC spheroids represents a significant roadblock to their successful use in the clinic. An ideal storage medium for MSC spheroids should function as both a vehicle for delivery and a cryoprotectant during storage of spheroids for use at a later time. In this study, we compared the outcomes after subjecting MSC spheroids to a freeze/thaw cycle in three Good Manufacturing Practices-grade cryopreservation media, CryoStor10 (CS10), Stem-Cellbanker (SCB), and Recovery Cell Culture Freezing Media (RFM) or conventional freezing medium (CM) (CM, Dulbecco's modified Eagle's medium containing 20% fetal bovine serum and 10% dimethyl sulfoxide) as a control for 2 months. The endpoints tested were viability, morphology, and expression of stem cell markers and other relevant genes. The results of LIVE/DEAD™ assays and annexin V/propidium iodide staining suggested that viability was relatively higher after one freeze/thaw cycle in CS10 or SCB than after freeze/thaw in CM or RFM. Furthermore, the relative \\\"stemness\\\" and expression of MSC markers were similar with or without freeze/thaw in CS10. Scanning electron microscopy also indicated that the surface morphology of MSC spheroids was well preserved after cryopreservation in CS10. Thus, even though it was tested for a short-term period, we suggest that CS10, which has been approved for clinical use by the U.S. Food and Drug Association, is a promising cryopreservation medium that would facilitate the development of MSC spheroids for future clinical use.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/bio.2023.0057\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2023.0057","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparison of Cryopreservation Media for Mesenchymal Stem Cell Spheroids.
Multipotent mesenchymal stromal/stem cell (MSC) spheroids generated in three-dimensional culture are of considerable interest as a novel therapeutic tool for regenerative medicine. However, the lack of reliable methods for storing MSC spheroids represents a significant roadblock to their successful use in the clinic. An ideal storage medium for MSC spheroids should function as both a vehicle for delivery and a cryoprotectant during storage of spheroids for use at a later time. In this study, we compared the outcomes after subjecting MSC spheroids to a freeze/thaw cycle in three Good Manufacturing Practices-grade cryopreservation media, CryoStor10 (CS10), Stem-Cellbanker (SCB), and Recovery Cell Culture Freezing Media (RFM) or conventional freezing medium (CM) (CM, Dulbecco's modified Eagle's medium containing 20% fetal bovine serum and 10% dimethyl sulfoxide) as a control for 2 months. The endpoints tested were viability, morphology, and expression of stem cell markers and other relevant genes. The results of LIVE/DEAD™ assays and annexin V/propidium iodide staining suggested that viability was relatively higher after one freeze/thaw cycle in CS10 or SCB than after freeze/thaw in CM or RFM. Furthermore, the relative "stemness" and expression of MSC markers were similar with or without freeze/thaw in CS10. Scanning electron microscopy also indicated that the surface morphology of MSC spheroids was well preserved after cryopreservation in CS10. Thus, even though it was tested for a short-term period, we suggest that CS10, which has been approved for clinical use by the U.S. Food and Drug Association, is a promising cryopreservation medium that would facilitate the development of MSC spheroids for future clinical use.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.