{"title":"交流电场作用下二甲亚砜溶液冻结过程中冰晶生长的定量分析。","authors":"Liting Liu, Zirui Wang, Menghan Wang, Gang Zhao","doi":"10.1089/bio.2023.0035","DOIUrl":null,"url":null,"abstract":"<p><p>During cryopreservation, the growth of ice crystals can cause mechanical damage to samples, which is one of the important factors limiting the quality of preserved samples. To enhance the preservation quality of biological samples, scholars have tried various engineering methods. Among them, an electric field is an essential factor affecting solution freezing. Dimethyl sulfoxide, as a commonly used cryoprotectant, can cause mechanical damage to cells due to ice crystals even when freezing at the optimal freezing rate. Water is a strongly polar dielectric material, and the applied alternating current (AC) electric field will affect the water freezing performance. Therefore, a quantitative study of ice crystal nucleation and growth during freezing of dimethyl sulfoxide solutions under different AC electric field conditions is needed to try to reduce ice crystal damage. We created a liquid-film device to approximate the ice crystal growth process as a two-dimensional image. The frequency of the AC voltage was set from 0 to 50 kHz. We measured the supercooling of the dimethyl sulfoxide solution under AC electric field conditions. As an objective and accurate quantitative analysis of the ice crystal growth process, we propose a Dilated Convolutional Segmentation Transformer for semantic segmentation of ice crystal images. It is concluded that the average area and the growth rate of single ice crystals decrease with increasing electric field frequency at a certain concentration of dimethyl sulfoxide solution. Lower concentrations of dimethyl sulfoxide solution in combination with an AC electric field can achieve similar ice suppression effects as when higher concentrations of dimethyl sulfoxide solution act alone. We believe that AC electric fields are expected to be an aid to cryopreservation and provide some theoretical basis and experimental foundation for its development.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Analysis of Ice Crystal Growth During Freezing of Dimethyl Sulfoxide Solutions Under Alternating Current Electric Fields.\",\"authors\":\"Liting Liu, Zirui Wang, Menghan Wang, Gang Zhao\",\"doi\":\"10.1089/bio.2023.0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During cryopreservation, the growth of ice crystals can cause mechanical damage to samples, which is one of the important factors limiting the quality of preserved samples. To enhance the preservation quality of biological samples, scholars have tried various engineering methods. Among them, an electric field is an essential factor affecting solution freezing. Dimethyl sulfoxide, as a commonly used cryoprotectant, can cause mechanical damage to cells due to ice crystals even when freezing at the optimal freezing rate. Water is a strongly polar dielectric material, and the applied alternating current (AC) electric field will affect the water freezing performance. Therefore, a quantitative study of ice crystal nucleation and growth during freezing of dimethyl sulfoxide solutions under different AC electric field conditions is needed to try to reduce ice crystal damage. We created a liquid-film device to approximate the ice crystal growth process as a two-dimensional image. The frequency of the AC voltage was set from 0 to 50 kHz. We measured the supercooling of the dimethyl sulfoxide solution under AC electric field conditions. As an objective and accurate quantitative analysis of the ice crystal growth process, we propose a Dilated Convolutional Segmentation Transformer for semantic segmentation of ice crystal images. It is concluded that the average area and the growth rate of single ice crystals decrease with increasing electric field frequency at a certain concentration of dimethyl sulfoxide solution. Lower concentrations of dimethyl sulfoxide solution in combination with an AC electric field can achieve similar ice suppression effects as when higher concentrations of dimethyl sulfoxide solution act alone. We believe that AC electric fields are expected to be an aid to cryopreservation and provide some theoretical basis and experimental foundation for its development.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/bio.2023.0035\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2023.0035","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantitative Analysis of Ice Crystal Growth During Freezing of Dimethyl Sulfoxide Solutions Under Alternating Current Electric Fields.
During cryopreservation, the growth of ice crystals can cause mechanical damage to samples, which is one of the important factors limiting the quality of preserved samples. To enhance the preservation quality of biological samples, scholars have tried various engineering methods. Among them, an electric field is an essential factor affecting solution freezing. Dimethyl sulfoxide, as a commonly used cryoprotectant, can cause mechanical damage to cells due to ice crystals even when freezing at the optimal freezing rate. Water is a strongly polar dielectric material, and the applied alternating current (AC) electric field will affect the water freezing performance. Therefore, a quantitative study of ice crystal nucleation and growth during freezing of dimethyl sulfoxide solutions under different AC electric field conditions is needed to try to reduce ice crystal damage. We created a liquid-film device to approximate the ice crystal growth process as a two-dimensional image. The frequency of the AC voltage was set from 0 to 50 kHz. We measured the supercooling of the dimethyl sulfoxide solution under AC electric field conditions. As an objective and accurate quantitative analysis of the ice crystal growth process, we propose a Dilated Convolutional Segmentation Transformer for semantic segmentation of ice crystal images. It is concluded that the average area and the growth rate of single ice crystals decrease with increasing electric field frequency at a certain concentration of dimethyl sulfoxide solution. Lower concentrations of dimethyl sulfoxide solution in combination with an AC electric field can achieve similar ice suppression effects as when higher concentrations of dimethyl sulfoxide solution act alone. We believe that AC electric fields are expected to be an aid to cryopreservation and provide some theoretical basis and experimental foundation for its development.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.