交流电场作用下二甲亚砜溶液冻结过程中冰晶生长的定量分析。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-08-01 Epub Date: 2023-11-22 DOI:10.1089/bio.2023.0035
Liting Liu, Zirui Wang, Menghan Wang, Gang Zhao
{"title":"交流电场作用下二甲亚砜溶液冻结过程中冰晶生长的定量分析。","authors":"Liting Liu, Zirui Wang, Menghan Wang, Gang Zhao","doi":"10.1089/bio.2023.0035","DOIUrl":null,"url":null,"abstract":"<p><p>During cryopreservation, the growth of ice crystals can cause mechanical damage to samples, which is one of the important factors limiting the quality of preserved samples. To enhance the preservation quality of biological samples, scholars have tried various engineering methods. Among them, an electric field is an essential factor affecting solution freezing. Dimethyl sulfoxide, as a commonly used cryoprotectant, can cause mechanical damage to cells due to ice crystals even when freezing at the optimal freezing rate. Water is a strongly polar dielectric material, and the applied alternating current (AC) electric field will affect the water freezing performance. Therefore, a quantitative study of ice crystal nucleation and growth during freezing of dimethyl sulfoxide solutions under different AC electric field conditions is needed to try to reduce ice crystal damage. We created a liquid-film device to approximate the ice crystal growth process as a two-dimensional image. The frequency of the AC voltage was set from 0 to 50 kHz. We measured the supercooling of the dimethyl sulfoxide solution under AC electric field conditions. As an objective and accurate quantitative analysis of the ice crystal growth process, we propose a Dilated Convolutional Segmentation Transformer for semantic segmentation of ice crystal images. It is concluded that the average area and the growth rate of single ice crystals decrease with increasing electric field frequency at a certain concentration of dimethyl sulfoxide solution. Lower concentrations of dimethyl sulfoxide solution in combination with an AC electric field can achieve similar ice suppression effects as when higher concentrations of dimethyl sulfoxide solution act alone. We believe that AC electric fields are expected to be an aid to cryopreservation and provide some theoretical basis and experimental foundation for its development.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Analysis of Ice Crystal Growth During Freezing of Dimethyl Sulfoxide Solutions Under Alternating Current Electric Fields.\",\"authors\":\"Liting Liu, Zirui Wang, Menghan Wang, Gang Zhao\",\"doi\":\"10.1089/bio.2023.0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During cryopreservation, the growth of ice crystals can cause mechanical damage to samples, which is one of the important factors limiting the quality of preserved samples. To enhance the preservation quality of biological samples, scholars have tried various engineering methods. Among them, an electric field is an essential factor affecting solution freezing. Dimethyl sulfoxide, as a commonly used cryoprotectant, can cause mechanical damage to cells due to ice crystals even when freezing at the optimal freezing rate. Water is a strongly polar dielectric material, and the applied alternating current (AC) electric field will affect the water freezing performance. Therefore, a quantitative study of ice crystal nucleation and growth during freezing of dimethyl sulfoxide solutions under different AC electric field conditions is needed to try to reduce ice crystal damage. We created a liquid-film device to approximate the ice crystal growth process as a two-dimensional image. The frequency of the AC voltage was set from 0 to 50 kHz. We measured the supercooling of the dimethyl sulfoxide solution under AC electric field conditions. As an objective and accurate quantitative analysis of the ice crystal growth process, we propose a Dilated Convolutional Segmentation Transformer for semantic segmentation of ice crystal images. It is concluded that the average area and the growth rate of single ice crystals decrease with increasing electric field frequency at a certain concentration of dimethyl sulfoxide solution. Lower concentrations of dimethyl sulfoxide solution in combination with an AC electric field can achieve similar ice suppression effects as when higher concentrations of dimethyl sulfoxide solution act alone. We believe that AC electric fields are expected to be an aid to cryopreservation and provide some theoretical basis and experimental foundation for its development.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/bio.2023.0035\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2023.0035","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在低温保存过程中,冰晶的生长会对样品造成机械损伤,这是限制保存样品质量的重要因素之一。为了提高生物样品的保存质量,学者们尝试了各种工程方法。其中电场是影响溶液冻结的重要因素。二甲基亚砜作为一种常用的冷冻保护剂,即使在最佳冷冻速率下冷冻,也会因冰晶而对细胞造成机械损伤。水是一种强极性的介电材料,外加的交流电场会影响水的冻结性能。因此,需要对不同交流电场条件下二甲亚砜溶液冻结过程中冰晶的成核和生长进行定量研究,以减少冰晶的损伤。我们创造了一个液体薄膜装置,以二维图像的形式来近似冰晶的生长过程。交流电压的频率设置为0到50 kHz。在交流电场条件下,测量了二甲亚砜溶液的过冷性。为了对冰晶生长过程进行客观准确的定量分析,我们提出了一种用于冰晶图像语义分割的扩展卷积分割变压器。结果表明,在一定浓度的二甲亚砜溶液中,随着电场频率的增加,单晶的平均面积和生长速度减小。较低浓度的二甲亚砜溶液与交流电场结合可以达到与高浓度的二甲亚砜溶液单独作用时相似的抑冰效果。我们认为交流电场有望成为低温保存的辅助手段,并为其发展提供一定的理论基础和实验基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative Analysis of Ice Crystal Growth During Freezing of Dimethyl Sulfoxide Solutions Under Alternating Current Electric Fields.

During cryopreservation, the growth of ice crystals can cause mechanical damage to samples, which is one of the important factors limiting the quality of preserved samples. To enhance the preservation quality of biological samples, scholars have tried various engineering methods. Among them, an electric field is an essential factor affecting solution freezing. Dimethyl sulfoxide, as a commonly used cryoprotectant, can cause mechanical damage to cells due to ice crystals even when freezing at the optimal freezing rate. Water is a strongly polar dielectric material, and the applied alternating current (AC) electric field will affect the water freezing performance. Therefore, a quantitative study of ice crystal nucleation and growth during freezing of dimethyl sulfoxide solutions under different AC electric field conditions is needed to try to reduce ice crystal damage. We created a liquid-film device to approximate the ice crystal growth process as a two-dimensional image. The frequency of the AC voltage was set from 0 to 50 kHz. We measured the supercooling of the dimethyl sulfoxide solution under AC electric field conditions. As an objective and accurate quantitative analysis of the ice crystal growth process, we propose a Dilated Convolutional Segmentation Transformer for semantic segmentation of ice crystal images. It is concluded that the average area and the growth rate of single ice crystals decrease with increasing electric field frequency at a certain concentration of dimethyl sulfoxide solution. Lower concentrations of dimethyl sulfoxide solution in combination with an AC electric field can achieve similar ice suppression effects as when higher concentrations of dimethyl sulfoxide solution act alone. We believe that AC electric fields are expected to be an aid to cryopreservation and provide some theoretical basis and experimental foundation for its development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1