有前途的正极材料NaV6O15的热力学数据及其合成/分解热力学分析

IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL Calphad-computer Coupling of Phase Diagrams and Thermochemistry Pub Date : 2023-11-27 DOI:10.1016/j.calphad.2023.102645
Miao Liu , Xinyue Li , Kun Song , Hang Su , Rucheng Wang , Liwen Hu , Xuewei Lv , Yuntao Xin
{"title":"有前途的正极材料NaV6O15的热力学数据及其合成/分解热力学分析","authors":"Miao Liu ,&nbsp;Xinyue Li ,&nbsp;Kun Song ,&nbsp;Hang Su ,&nbsp;Rucheng Wang ,&nbsp;Liwen Hu ,&nbsp;Xuewei Lv ,&nbsp;Yuntao Xin","doi":"10.1016/j.calphad.2023.102645","DOIUrl":null,"url":null,"abstract":"<div><p><span>Sodium-ion batteries have emerged as a promising alternative to lithium-ion batteries due to their lower cost and similar electrochemical properties. The development of high-capacity and long-life electrode materials is crucial for advancing sodium-ion battery research. A significant amount of research has been conducted on the electrochemical properties of NaV</span><sub>6</sub>O<sub>15</sub>, however, there remains a dearth of data on its thermodynamic properties. Herein, NaV<sub>6</sub>O<sub>15</sub> was synthesized using the solid-phase sintering method and thoroughly characterized. Thermodynamic data in the temperature ranges of 298.15–900 K, 15–303 K, and 573–873 K were determined using the Neumann-Kopp rule, low-temperature physical property measurement system, and MHTC 96 line, respectively. The heat capacity equation of NaV<sub>6</sub>O<sub>15</sub> was derived and its enthalpy, entropy, and Gibbs free energy (298.15–800 K) were calculated. Moreover, the thermodynamics of NaV<sub>6</sub>O<sub>15</sub><span>-related formation and decomposition reactions were analyzed. The obtained heat capacity equation of NaV</span><sub>6</sub>O<sub>15</sub> was <span><math><mrow><msub><mi>C</mi><mi>p</mi></msub><mrow><mo>=</mo><mn>517.05524</mn><mo>+</mo><mn>0.08612</mn></mrow><mi>T</mi><mrow><mo>−</mo><mn>1.25053</mn><mo>×</mo><mn>1</mn></mrow><msup><mn>0</mn><mn>7</mn></msup><msup><mi>T</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup><mrow><mo>(</mo><mrow><mi>J</mi><mo>/</mo><mrow><mi>m</mi><mi>o</mi><mi>l</mi><mo>·</mo><mi>K</mi></mrow></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mrow><mn>298.15</mn><mo>∼</mo><mn>873</mn><mi>K</mi></mrow><mo>)</mo></mrow></mrow></math></span>. This study addresses the thermodynamic knowledge gaps of NaV<sub>6</sub>O<sub>15</sub> and provides valuable insights for its preparation and decomposition in manufacturing processes.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic data of a promising cathode material NaV6O15 and its synthesis/decomposition thermodynamic analysis\",\"authors\":\"Miao Liu ,&nbsp;Xinyue Li ,&nbsp;Kun Song ,&nbsp;Hang Su ,&nbsp;Rucheng Wang ,&nbsp;Liwen Hu ,&nbsp;Xuewei Lv ,&nbsp;Yuntao Xin\",\"doi\":\"10.1016/j.calphad.2023.102645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Sodium-ion batteries have emerged as a promising alternative to lithium-ion batteries due to their lower cost and similar electrochemical properties. The development of high-capacity and long-life electrode materials is crucial for advancing sodium-ion battery research. A significant amount of research has been conducted on the electrochemical properties of NaV</span><sub>6</sub>O<sub>15</sub>, however, there remains a dearth of data on its thermodynamic properties. Herein, NaV<sub>6</sub>O<sub>15</sub> was synthesized using the solid-phase sintering method and thoroughly characterized. Thermodynamic data in the temperature ranges of 298.15–900 K, 15–303 K, and 573–873 K were determined using the Neumann-Kopp rule, low-temperature physical property measurement system, and MHTC 96 line, respectively. The heat capacity equation of NaV<sub>6</sub>O<sub>15</sub> was derived and its enthalpy, entropy, and Gibbs free energy (298.15–800 K) were calculated. Moreover, the thermodynamics of NaV<sub>6</sub>O<sub>15</sub><span>-related formation and decomposition reactions were analyzed. The obtained heat capacity equation of NaV</span><sub>6</sub>O<sub>15</sub> was <span><math><mrow><msub><mi>C</mi><mi>p</mi></msub><mrow><mo>=</mo><mn>517.05524</mn><mo>+</mo><mn>0.08612</mn></mrow><mi>T</mi><mrow><mo>−</mo><mn>1.25053</mn><mo>×</mo><mn>1</mn></mrow><msup><mn>0</mn><mn>7</mn></msup><msup><mi>T</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup><mrow><mo>(</mo><mrow><mi>J</mi><mo>/</mo><mrow><mi>m</mi><mi>o</mi><mi>l</mi><mo>·</mo><mi>K</mi></mrow></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mrow><mn>298.15</mn><mo>∼</mo><mn>873</mn><mi>K</mi></mrow><mo>)</mo></mrow></mrow></math></span>. This study addresses the thermodynamic knowledge gaps of NaV<sub>6</sub>O<sub>15</sub> and provides valuable insights for its preparation and decomposition in manufacturing processes.</p></div>\",\"PeriodicalId\":9436,\"journal\":{\"name\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0364591623001177\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591623001177","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钠离子电池由于其更低的成本和相似的电化学性能,已经成为锂离子电池的一个有前途的替代品。开发高容量、长寿命电极材料是推进钠离子电池研究的关键。虽然对NaV6O15的电化学性能进行了大量的研究,但对其热力学性能的研究还很缺乏。本文采用固相烧结法合成了NaV6O15,并对其进行了表征。在298.15 ~ 900 K、15 ~ 303 K和573 ~ 873 K的温度范围内,分别采用Neumann-Kopp规则、低温物性测量系统和MHTC 96线进行了热力学数据的测定。推导了NaV6O15的热容方程,计算了其焓、熵和吉布斯自由能(298.15 ~ 800k)。并对与nav6o15相关的生成和分解反应进行了热力学分析。得到的NaV6O15热容量方程为Cp=517.05524+0.08612T−1.25053×107T−2(J/mol·K)(298.15 ~ 873K)。本研究解决了NaV6O15的热力学知识缺口,并为其制备和制造过程中的分解提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermodynamic data of a promising cathode material NaV6O15 and its synthesis/decomposition thermodynamic analysis

Sodium-ion batteries have emerged as a promising alternative to lithium-ion batteries due to their lower cost and similar electrochemical properties. The development of high-capacity and long-life electrode materials is crucial for advancing sodium-ion battery research. A significant amount of research has been conducted on the electrochemical properties of NaV6O15, however, there remains a dearth of data on its thermodynamic properties. Herein, NaV6O15 was synthesized using the solid-phase sintering method and thoroughly characterized. Thermodynamic data in the temperature ranges of 298.15–900 K, 15–303 K, and 573–873 K were determined using the Neumann-Kopp rule, low-temperature physical property measurement system, and MHTC 96 line, respectively. The heat capacity equation of NaV6O15 was derived and its enthalpy, entropy, and Gibbs free energy (298.15–800 K) were calculated. Moreover, the thermodynamics of NaV6O15-related formation and decomposition reactions were analyzed. The obtained heat capacity equation of NaV6O15 was Cp=517.05524+0.08612T1.25053×107T2(J/mol·K)(298.15873K). This study addresses the thermodynamic knowledge gaps of NaV6O15 and provides valuable insights for its preparation and decomposition in manufacturing processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
16.70%
发文量
94
审稿时长
2.5 months
期刊介绍: The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.
期刊最新文献
Catastrophe theory and thermodynamic instability to predict congruent melting temperature of crystals A new model for precipitation kinetics considering diffusion within the precipitates Study on the γ + γ′ microstructure characterization of the Co–V–Zr system based on CALPHAD method Critical assessment of the Si-P system: P solubility in the Si-rich region and refining by phosphorus distillation Assessment of thermal conductivity for FCC Al-X (X=Zn, Mg) and Al-Zn-Mg alloys: Experiments and modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1