{"title":"从像个人一样说话到个性化:与对话代理进行个性化、定期互动的效果","authors":"Theo Araujo , Nadine Bol","doi":"10.1016/j.chbah.2023.100030","DOIUrl":null,"url":null,"abstract":"<div><p>As human-AI interactions become more pervasive, conversational agents are increasingly relevant in our communication environment. While a rich body of research investigates the consequences of one-shot, single interactions with these agents, knowledge is still scarce on how these consequences evolve across regular, repeated interactions in which these agents make use of AI-enabled techniques to enable increasingly personalized conversations and recommendations. By means of a longitudinal experiment (<em>N</em> = 179) with an agent able to personalize a conversation, this study sheds light on how perceptions – about the agent (anthropomorphism and trust), the interaction (dialogue quality and privacy risks), and the information (relevance and credibility) – and behavior (self-disclosure and recommendation adherence) evolve across interactions. The findings highlight the role of interplay between system-initiated personalization and repeated exposure in this process, suggesting the importance of considering the role of AI in communication processes in a dynamic manner.</p></div>","PeriodicalId":100324,"journal":{"name":"Computers in Human Behavior: Artificial Humans","volume":"2 1","pages":"Article 100030"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949882123000300/pdfft?md5=0e32c4980a0e73c074f1b9a6eb531c3f&pid=1-s2.0-S2949882123000300-main.pdf","citationCount":"0","resultStr":"{\"title\":\"From speaking like a person to being personal: The effects of personalized, regular interactions with conversational agents\",\"authors\":\"Theo Araujo , Nadine Bol\",\"doi\":\"10.1016/j.chbah.2023.100030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As human-AI interactions become more pervasive, conversational agents are increasingly relevant in our communication environment. While a rich body of research investigates the consequences of one-shot, single interactions with these agents, knowledge is still scarce on how these consequences evolve across regular, repeated interactions in which these agents make use of AI-enabled techniques to enable increasingly personalized conversations and recommendations. By means of a longitudinal experiment (<em>N</em> = 179) with an agent able to personalize a conversation, this study sheds light on how perceptions – about the agent (anthropomorphism and trust), the interaction (dialogue quality and privacy risks), and the information (relevance and credibility) – and behavior (self-disclosure and recommendation adherence) evolve across interactions. The findings highlight the role of interplay between system-initiated personalization and repeated exposure in this process, suggesting the importance of considering the role of AI in communication processes in a dynamic manner.</p></div>\",\"PeriodicalId\":100324,\"journal\":{\"name\":\"Computers in Human Behavior: Artificial Humans\",\"volume\":\"2 1\",\"pages\":\"Article 100030\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949882123000300/pdfft?md5=0e32c4980a0e73c074f1b9a6eb531c3f&pid=1-s2.0-S2949882123000300-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Human Behavior: Artificial Humans\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949882123000300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Human Behavior: Artificial Humans","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949882123000300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From speaking like a person to being personal: The effects of personalized, regular interactions with conversational agents
As human-AI interactions become more pervasive, conversational agents are increasingly relevant in our communication environment. While a rich body of research investigates the consequences of one-shot, single interactions with these agents, knowledge is still scarce on how these consequences evolve across regular, repeated interactions in which these agents make use of AI-enabled techniques to enable increasingly personalized conversations and recommendations. By means of a longitudinal experiment (N = 179) with an agent able to personalize a conversation, this study sheds light on how perceptions – about the agent (anthropomorphism and trust), the interaction (dialogue quality and privacy risks), and the information (relevance and credibility) – and behavior (self-disclosure and recommendation adherence) evolve across interactions. The findings highlight the role of interplay between system-initiated personalization and repeated exposure in this process, suggesting the importance of considering the role of AI in communication processes in a dynamic manner.