小空间端到端跨域关键字识别的选择性迁移子空间学习

IF 2.4 3区 计算机科学 Q2 ACOUSTICS Speech Communication Pub Date : 2023-11-22 DOI:10.1016/j.specom.2023.103019
Fei Ma, Chengliang Wang, Xusheng Li, Zhuo Zeng
{"title":"小空间端到端跨域关键字识别的选择性迁移子空间学习","authors":"Fei Ma,&nbsp;Chengliang Wang,&nbsp;Xusheng Li,&nbsp;Zhuo Zeng","doi":"10.1016/j.specom.2023.103019","DOIUrl":null,"url":null,"abstract":"<div><p>In small-footprint end-to-end keyword spotting, it is often expensive and time-consuming to acquire sufficient labels in various speech scenarios. To overcome this problem, transfer learning leverages the rich knowledge of the auxiliary domain to annotate the unlabeled target data. However, most existing transfer learning methods typically learn a domain-invariant feature representation while ignoring the negative transfer problem. In this paper, we propose a new and general cross-domain keyword spotting framework called selective transfer subspace learning (STSL) that avoid negative transfer and dramatically improve the accuracy for cross-domain keyword spotting by actively selecting appropriate source samples. Specifically, STSL first aligns geometrical relationship and weighted distribution discrepancy to learn a domain-invariant projection subspace. Then, it actively selects appropriate source samples that are similar to the target domain for transfer learning to avoid negative transfer. Finally, we formulate a minimization problem that alternately optimizes the projection subspace and source active selection, giving an effective optimization. Experimental results on 10 groups of cross-domain keyword spotting tasks show that our STSL outperforms some state-of-the-art transfer learning methods and no transfer learning methods.</p></div>","PeriodicalId":49485,"journal":{"name":"Speech Communication","volume":"156 ","pages":"Article 103019"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016763932300153X/pdfft?md5=82a39d003305603c8c276ad8a7d9c674&pid=1-s2.0-S016763932300153X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Selective transfer subspace learning for small-footprint end-to-end cross-domain keyword spotting\",\"authors\":\"Fei Ma,&nbsp;Chengliang Wang,&nbsp;Xusheng Li,&nbsp;Zhuo Zeng\",\"doi\":\"10.1016/j.specom.2023.103019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In small-footprint end-to-end keyword spotting, it is often expensive and time-consuming to acquire sufficient labels in various speech scenarios. To overcome this problem, transfer learning leverages the rich knowledge of the auxiliary domain to annotate the unlabeled target data. However, most existing transfer learning methods typically learn a domain-invariant feature representation while ignoring the negative transfer problem. In this paper, we propose a new and general cross-domain keyword spotting framework called selective transfer subspace learning (STSL) that avoid negative transfer and dramatically improve the accuracy for cross-domain keyword spotting by actively selecting appropriate source samples. Specifically, STSL first aligns geometrical relationship and weighted distribution discrepancy to learn a domain-invariant projection subspace. Then, it actively selects appropriate source samples that are similar to the target domain for transfer learning to avoid negative transfer. Finally, we formulate a minimization problem that alternately optimizes the projection subspace and source active selection, giving an effective optimization. Experimental results on 10 groups of cross-domain keyword spotting tasks show that our STSL outperforms some state-of-the-art transfer learning methods and no transfer learning methods.</p></div>\",\"PeriodicalId\":49485,\"journal\":{\"name\":\"Speech Communication\",\"volume\":\"156 \",\"pages\":\"Article 103019\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016763932300153X/pdfft?md5=82a39d003305603c8c276ad8a7d9c674&pid=1-s2.0-S016763932300153X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Speech Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016763932300153X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016763932300153X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

在小占用空间的端到端关键字识别中,在各种语音场景中获取足够的标签通常既昂贵又耗时。为了克服这一问题,迁移学习利用辅助领域的丰富知识对未标记的目标数据进行标注。然而,大多数现有的迁移学习方法通常只学习域不变的特征表示,而忽略了负迁移问题。本文提出了一种新的通用跨域关键字识别框架——选择性迁移子空间学习(STSL),该框架通过主动选择合适的源样本,避免了负迁移,显著提高了跨域关键字识别的准确性。具体而言,STSL首先对几何关系和加权分布差异进行对齐,学习域不变投影子空间。然后,主动选择与目标域相似的合适源样本进行迁移学习,避免负迁移。最后,我们提出了一个最小化问题,交替优化投影子空间和源主动选择,给出了一个有效的优化。在10组跨域关键字识别任务上的实验结果表明,我们的STSL算法优于一些最先进的迁移学习方法和无迁移学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selective transfer subspace learning for small-footprint end-to-end cross-domain keyword spotting

In small-footprint end-to-end keyword spotting, it is often expensive and time-consuming to acquire sufficient labels in various speech scenarios. To overcome this problem, transfer learning leverages the rich knowledge of the auxiliary domain to annotate the unlabeled target data. However, most existing transfer learning methods typically learn a domain-invariant feature representation while ignoring the negative transfer problem. In this paper, we propose a new and general cross-domain keyword spotting framework called selective transfer subspace learning (STSL) that avoid negative transfer and dramatically improve the accuracy for cross-domain keyword spotting by actively selecting appropriate source samples. Specifically, STSL first aligns geometrical relationship and weighted distribution discrepancy to learn a domain-invariant projection subspace. Then, it actively selects appropriate source samples that are similar to the target domain for transfer learning to avoid negative transfer. Finally, we formulate a minimization problem that alternately optimizes the projection subspace and source active selection, giving an effective optimization. Experimental results on 10 groups of cross-domain keyword spotting tasks show that our STSL outperforms some state-of-the-art transfer learning methods and no transfer learning methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Speech Communication
Speech Communication 工程技术-计算机:跨学科应用
CiteScore
6.80
自引率
6.20%
发文量
94
审稿时长
19.2 weeks
期刊介绍: Speech Communication is an interdisciplinary journal whose primary objective is to fulfil the need for the rapid dissemination and thorough discussion of basic and applied research results. The journal''s primary objectives are: • to present a forum for the advancement of human and human-machine speech communication science; • to stimulate cross-fertilization between different fields of this domain; • to contribute towards the rapid and wide diffusion of scientifically sound contributions in this domain.
期刊最新文献
Editorial Board Systematic review: The identification of segmental Mandarin-accented English features A comprehensive study on supervised single-channel noisy speech separation with multi-task learning An overview of high-resource automatic speech recognition methods and their empirical evaluation in low-resource environments A model of early word acquisition based on realistic-scale audiovisual naming events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1