气象模式预报能否初始化水文模拟,而不是初始化未测量流域的观测数据?

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Meteorological Applications Pub Date : 2023-11-28 DOI:10.1002/met.2165
Alessandro Ceppi, Nicolás Andrés Chaves González, Silvio Davolio, Giovanni Ravazzani
{"title":"气象模式预报能否初始化水文模拟,而不是初始化未测量流域的观测数据?","authors":"Alessandro Ceppi,&nbsp;Nicolás Andrés Chaves González,&nbsp;Silvio Davolio,&nbsp;Giovanni Ravazzani","doi":"10.1002/met.2165","DOIUrl":null,"url":null,"abstract":"<p>Floods are among natural disasters which cause the largest damages worldwide each year, inducing fatalities of human lives, destruction of infrastructure and economical losses. Consequently, forecasting this type of events through hydro-meteorological models is still of great importance from a civil protection point of view since it allows to reduce hydrological risk by means of early warning systems. Nevertheless, hydrological model initialization in ungauged basins, where there is lack of direct measurements of meteorological information, is a known issue affecting the entire prediction chain. The present study evaluates the possibility of using forecasts provided by the meteorological model MOLOCH developed by CNR-ISAC forcing the FEST-WB hydrological model developed by Politecnico di Milano to perform discharge simulations assuming that the forecasting errors are negligible when using the first 24 h of time horizon. The study is carried out in the urban catchments of Milan city, the Seveso-Olona-Lambro (SOL) river basins, located in northern Italy. The main hydro-meteorological variables are analysed by comparing the spatialized and observed meteorological data, provided by an official regional network of weather stations plus a citizen scientists' contribution with the meteorological model forecasts. Moreover, a sensitivity analysis following the well-known one-factor-at-a-time methodology is accomplished with the aim of defining which atmospheric forcing, beyond rainfall, mostly affects flowrate forecasts. Results generally show satisfactory correspondences between forecasts and observed data for the discharge variable at daily scale, although an underestimation of precipitation, particularly for severe events in summer, is present. Therefore, using meteorological forecasts to create daily initial conditions for hydrological model, instead of ground observations, might be a reliable and valuable approach, even if some considerations should be borne in mind when coupling the two models.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"30 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/met.2165","citationCount":"0","resultStr":"{\"title\":\"Can meteorological model forecasts initialize hydrological simulations rather than observed data in ungauged basins?\",\"authors\":\"Alessandro Ceppi,&nbsp;Nicolás Andrés Chaves González,&nbsp;Silvio Davolio,&nbsp;Giovanni Ravazzani\",\"doi\":\"10.1002/met.2165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Floods are among natural disasters which cause the largest damages worldwide each year, inducing fatalities of human lives, destruction of infrastructure and economical losses. Consequently, forecasting this type of events through hydro-meteorological models is still of great importance from a civil protection point of view since it allows to reduce hydrological risk by means of early warning systems. Nevertheless, hydrological model initialization in ungauged basins, where there is lack of direct measurements of meteorological information, is a known issue affecting the entire prediction chain. The present study evaluates the possibility of using forecasts provided by the meteorological model MOLOCH developed by CNR-ISAC forcing the FEST-WB hydrological model developed by Politecnico di Milano to perform discharge simulations assuming that the forecasting errors are negligible when using the first 24 h of time horizon. The study is carried out in the urban catchments of Milan city, the Seveso-Olona-Lambro (SOL) river basins, located in northern Italy. The main hydro-meteorological variables are analysed by comparing the spatialized and observed meteorological data, provided by an official regional network of weather stations plus a citizen scientists' contribution with the meteorological model forecasts. Moreover, a sensitivity analysis following the well-known one-factor-at-a-time methodology is accomplished with the aim of defining which atmospheric forcing, beyond rainfall, mostly affects flowrate forecasts. Results generally show satisfactory correspondences between forecasts and observed data for the discharge variable at daily scale, although an underestimation of precipitation, particularly for severe events in summer, is present. Therefore, using meteorological forecasts to create daily initial conditions for hydrological model, instead of ground observations, might be a reliable and valuable approach, even if some considerations should be borne in mind when coupling the two models.</p>\",\"PeriodicalId\":49825,\"journal\":{\"name\":\"Meteorological Applications\",\"volume\":\"30 6\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/met.2165\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteorological Applications\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/met.2165\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.2165","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

洪水是每年在世界范围内造成最大损失的自然灾害之一,造成人员死亡、基础设施破坏和经济损失。因此,从民防的角度来看,通过水文气象模型预测这类事件仍然非常重要,因为它可以通过早期预警系统减少水文风险。然而,在缺乏气象信息直接测量的未测量流域中,水文模型初始化是一个影响整个预测链的已知问题。本研究评估了利用CNR-ISAC开发的气象模型MOLOCH提供的预报强迫米兰理工大学开发的FEST-WB水文模型进行排放模拟的可能性,假设在使用时间范围的前24小时时预报误差可以忽略不计。该研究是在意大利北部的Seveso-Olona-Lambro (SOL)河流域米兰市的城市集水区进行的。主要水文气象变量是通过比较由官方区域气象站网络提供的空间化气象数据和观测气象数据以及公民科学家对气象模式预报的贡献来分析的。此外,灵敏度分析遵循了众所周知的一次一个因素的方法,其目的是确定除了降雨之外,哪些大气强迫主要影响流量预测。结果表明,在日尺度上,流量变量的预报数据与观测数据之间普遍存在令人满意的对应关系,尽管对降水的估计存在不足,特别是对夏季的严重事件。因此,使用气象预报来创建水文模型的日常初始条件,而不是地面观测,可能是一种可靠而有价值的方法,即使在耦合两个模型时需要考虑一些因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can meteorological model forecasts initialize hydrological simulations rather than observed data in ungauged basins?

Floods are among natural disasters which cause the largest damages worldwide each year, inducing fatalities of human lives, destruction of infrastructure and economical losses. Consequently, forecasting this type of events through hydro-meteorological models is still of great importance from a civil protection point of view since it allows to reduce hydrological risk by means of early warning systems. Nevertheless, hydrological model initialization in ungauged basins, where there is lack of direct measurements of meteorological information, is a known issue affecting the entire prediction chain. The present study evaluates the possibility of using forecasts provided by the meteorological model MOLOCH developed by CNR-ISAC forcing the FEST-WB hydrological model developed by Politecnico di Milano to perform discharge simulations assuming that the forecasting errors are negligible when using the first 24 h of time horizon. The study is carried out in the urban catchments of Milan city, the Seveso-Olona-Lambro (SOL) river basins, located in northern Italy. The main hydro-meteorological variables are analysed by comparing the spatialized and observed meteorological data, provided by an official regional network of weather stations plus a citizen scientists' contribution with the meteorological model forecasts. Moreover, a sensitivity analysis following the well-known one-factor-at-a-time methodology is accomplished with the aim of defining which atmospheric forcing, beyond rainfall, mostly affects flowrate forecasts. Results generally show satisfactory correspondences between forecasts and observed data for the discharge variable at daily scale, although an underestimation of precipitation, particularly for severe events in summer, is present. Therefore, using meteorological forecasts to create daily initial conditions for hydrological model, instead of ground observations, might be a reliable and valuable approach, even if some considerations should be borne in mind when coupling the two models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meteorological Applications
Meteorological Applications 地学-气象与大气科学
CiteScore
5.70
自引率
3.70%
发文量
62
审稿时长
>12 weeks
期刊介绍: The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including: applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits; forecasting, warning and service delivery techniques and methods; weather hazards, their analysis and prediction; performance, verification and value of numerical models and forecasting services; practical applications of ocean and climate models; education and training.
期刊最新文献
A comparative analysis of heat waves over two major urban agglomerations in China Incorporating zero-plane displacement in roughness length estimation and exposure correction factor calculation Spatial–temporal variation of daily precipitation in different levels over mainland China during 1960–2019 A novel early-warning standardized indicator for drought preparedness and management under multiple climate model projections Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1