从显微镜到微像素:外周血膜人工智能的快速回顾。

IF 6.9 2区 医学 Q1 HEMATOLOGY Blood Reviews Pub Date : 2024-03-01 DOI:10.1016/j.blre.2023.101144
Bingwen Eugene Fan , Bryan Song Jun Yong , Ruiqi Li , Samuel Sherng Young Wang , Min Yi Natalie Aw , Ming Fang Chia , David Tao Yi Chen , Yuan Shan Neo , Bruno Occhipinti , Ryan Ruiyang Ling , Kollengode Ramanathan , Yi Xiong Ong , Kian Guan Eric Lim , Wei Yong Kevin Wong , Shu Ping Lim , Siti Thuraiya Binte Abdul Latiff , Hemalatha Shanmugam , Moh Sim Wong , Kuperan Ponnudurai , Stefan Winkler
{"title":"从显微镜到微像素:外周血膜人工智能的快速回顾。","authors":"Bingwen Eugene Fan ,&nbsp;Bryan Song Jun Yong ,&nbsp;Ruiqi Li ,&nbsp;Samuel Sherng Young Wang ,&nbsp;Min Yi Natalie Aw ,&nbsp;Ming Fang Chia ,&nbsp;David Tao Yi Chen ,&nbsp;Yuan Shan Neo ,&nbsp;Bruno Occhipinti ,&nbsp;Ryan Ruiyang Ling ,&nbsp;Kollengode Ramanathan ,&nbsp;Yi Xiong Ong ,&nbsp;Kian Guan Eric Lim ,&nbsp;Wei Yong Kevin Wong ,&nbsp;Shu Ping Lim ,&nbsp;Siti Thuraiya Binte Abdul Latiff ,&nbsp;Hemalatha Shanmugam ,&nbsp;Moh Sim Wong ,&nbsp;Kuperan Ponnudurai ,&nbsp;Stefan Winkler","doi":"10.1016/j.blre.2023.101144","DOIUrl":null,"url":null,"abstract":"<div><p><span>Artificial intelligence (AI) and its application in classification of blood cells in the peripheral blood film is an evolving field in haematology. We performed a rapid review of the literature on AI and peripheral blood films, evaluating the condition studied, image datasets, machine learning models, training set size, testing set size and accuracy. A total of 283 studies were identified, encompassing 6 broad domains: malaria (</span><em>n</em> = 95), leukemia (<em>n</em> = 81), leukocytes (<em>n</em> = 72), mixed (<em>n</em> = 25), erythrocytes (<em>n</em><span> = 15) or Myelodysplastic syndrome (MDS) (n = 1). These publications have demonstrated high self-reported mean accuracy rates across various studies (95.5% for malaria, 96.0% for leukemia, 94.4% for leukocytes, 95.2% for mixed studies and 91.2% for erythrocytes), with an overall mean accuracy of 95.1%. Despite the high accuracy, the challenges toward real world translational usage of these AI trained models include the need for well-validated multicentre data, data standardisation, and studies on less common cell types and non-malarial blood-borne parasites.</span></p></div>","PeriodicalId":56139,"journal":{"name":"Blood Reviews","volume":"64 ","pages":"Article 101144"},"PeriodicalIF":6.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From microscope to micropixels: A rapid review of artificial intelligence for the peripheral blood film\",\"authors\":\"Bingwen Eugene Fan ,&nbsp;Bryan Song Jun Yong ,&nbsp;Ruiqi Li ,&nbsp;Samuel Sherng Young Wang ,&nbsp;Min Yi Natalie Aw ,&nbsp;Ming Fang Chia ,&nbsp;David Tao Yi Chen ,&nbsp;Yuan Shan Neo ,&nbsp;Bruno Occhipinti ,&nbsp;Ryan Ruiyang Ling ,&nbsp;Kollengode Ramanathan ,&nbsp;Yi Xiong Ong ,&nbsp;Kian Guan Eric Lim ,&nbsp;Wei Yong Kevin Wong ,&nbsp;Shu Ping Lim ,&nbsp;Siti Thuraiya Binte Abdul Latiff ,&nbsp;Hemalatha Shanmugam ,&nbsp;Moh Sim Wong ,&nbsp;Kuperan Ponnudurai ,&nbsp;Stefan Winkler\",\"doi\":\"10.1016/j.blre.2023.101144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Artificial intelligence (AI) and its application in classification of blood cells in the peripheral blood film is an evolving field in haematology. We performed a rapid review of the literature on AI and peripheral blood films, evaluating the condition studied, image datasets, machine learning models, training set size, testing set size and accuracy. A total of 283 studies were identified, encompassing 6 broad domains: malaria (</span><em>n</em> = 95), leukemia (<em>n</em> = 81), leukocytes (<em>n</em> = 72), mixed (<em>n</em> = 25), erythrocytes (<em>n</em><span> = 15) or Myelodysplastic syndrome (MDS) (n = 1). These publications have demonstrated high self-reported mean accuracy rates across various studies (95.5% for malaria, 96.0% for leukemia, 94.4% for leukocytes, 95.2% for mixed studies and 91.2% for erythrocytes), with an overall mean accuracy of 95.1%. Despite the high accuracy, the challenges toward real world translational usage of these AI trained models include the need for well-validated multicentre data, data standardisation, and studies on less common cell types and non-malarial blood-borne parasites.</span></p></div>\",\"PeriodicalId\":56139,\"journal\":{\"name\":\"Blood Reviews\",\"volume\":\"64 \",\"pages\":\"Article 101144\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268960X23001054\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268960X23001054","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)及其在外周血膜血细胞分类中的应用是血液学研究的一个新兴领域。我们快速回顾了有关人工智能和外周血膜的文献,评估了研究条件、图像数据集、机器学习模型、训练集大小、测试集大小和准确性。共确定了283项研究,包括6个广泛领域:疟疾(n = 95)、白血病(n = 81)、白细胞(n = 72)、混合(n = 25)、红细胞(n = 15)或骨髓增生异常综合征(MDS) (n = 1)。这些出版物在各种研究中显示出较高的自我报告平均准确率(疟疾95.5%、白血病96.0%、白细胞94.4%、混合研究95.2%和红细胞91.2%),总体平均准确率为95.1%。尽管准确率很高,但这些人工智能训练模型在现实世界中的转化使用面临的挑战包括需要经过良好验证的多中心数据、数据标准化以及对不太常见的细胞类型和非疟疾血源性寄生虫的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From microscope to micropixels: A rapid review of artificial intelligence for the peripheral blood film

Artificial intelligence (AI) and its application in classification of blood cells in the peripheral blood film is an evolving field in haematology. We performed a rapid review of the literature on AI and peripheral blood films, evaluating the condition studied, image datasets, machine learning models, training set size, testing set size and accuracy. A total of 283 studies were identified, encompassing 6 broad domains: malaria (n = 95), leukemia (n = 81), leukocytes (n = 72), mixed (n = 25), erythrocytes (n = 15) or Myelodysplastic syndrome (MDS) (n = 1). These publications have demonstrated high self-reported mean accuracy rates across various studies (95.5% for malaria, 96.0% for leukemia, 94.4% for leukocytes, 95.2% for mixed studies and 91.2% for erythrocytes), with an overall mean accuracy of 95.1%. Despite the high accuracy, the challenges toward real world translational usage of these AI trained models include the need for well-validated multicentre data, data standardisation, and studies on less common cell types and non-malarial blood-borne parasites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Blood Reviews
Blood Reviews 医学-血液学
CiteScore
13.80
自引率
1.40%
发文量
78
期刊介绍: Blood Reviews, a highly regarded international journal, serves as a vital information hub, offering comprehensive evaluations of clinical practices and research insights from esteemed experts. Specially commissioned, peer-reviewed articles authored by leading researchers and practitioners ensure extensive global coverage across all sub-specialties of hematology.
期刊最新文献
Editorial Board Breaking down frailty: Assessing vulnerability in acute myeloid leukemia Longitudinal clinical manifestations of Fanconi anemia: A systematized review Absolute and functional iron deficiency: Biomarkers, impact on immune system, and therapy Measurable residual disease (MRD)-testing in haematological cancers: A giant leap forward or sideways?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1