基于QSARINS工具的7h -吡咯[2,3-d]嘧啶-4-胺衍生物BTK抑制剂治疗类风湿关节炎的研究

Shital M Patil, Kalyani D Asgaonkar, Pradnya Magdum, Vaishnavi Chinde, Aishwarya Edake, Akshata Naik
{"title":"基于QSARINS工具的7h -吡咯[2,3-d]嘧啶-4-胺衍生物BTK抑制剂治疗类风湿关节炎的研究","authors":"Shital M Patil, Kalyani D Asgaonkar, Pradnya Magdum, Vaishnavi Chinde, Aishwarya Edake, Akshata Naik","doi":"10.2174/0118715230272263231103094710","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation of the joints, leading to pain, swelling, and joint deformity. Effective management of RA involves the use of disease-modifying drugs that can slow down disease progression and alleviate symptoms. Among the potential targets for RA treatment is Bruton's tyrosine kinase (BTK), which plays a crucial role in B-cell signalling and contributes to the pathogenesis of RA.</p><p><strong>Aims: </strong>QSARINS (QSAR-INSUBRIA) is software used for the development and validation of Quantitative Structure-Activity Relationship (QSAR) analysis. In the present work, this software was explored for pharmacophore optimization of the pyrrolo-pyrimidine nucleus for anti-rheumatoid activity.</p><p><strong>Methods: </strong>A series of pyrrolo-pyrimidine derivatives were used to build the QSAR models. These models were generated to identify structural features that correlate significantly with the activity. We followed the assessment of statistical parameters to ensure thorough validation of all the QSAR models. The QSAR models demonstrating better statistical performance were selected, and descriptors of these models were analysed.</p><p><strong>Results: </strong>The results showed that the QSAR models were highly statistically robust and exhibited a strong external predictive ability. Their structural features were also deduced.</p><p><strong>Conclusion: </strong>This QSAR study provided crucial information about the specific molecular features that can be used for the optimization of the pharmacophores. This research provides valuable insights into the structural features essential for BTK inhibition and paves the way for the design and development of novel anti-rheumatic agents targeting BTK in RA.</p>","PeriodicalId":94368,"journal":{"name":"Anti-inflammatory & anti-allergy agents in medicinal chemistry","volume":" ","pages":"236-249"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of 7H-pyrrolo[2,3-d]pyrimidin-4-amine Derivatives Using QSARINS Tool as BTK Inhibitors for the Treatment of Rheumatoid Arthritis.\",\"authors\":\"Shital M Patil, Kalyani D Asgaonkar, Pradnya Magdum, Vaishnavi Chinde, Aishwarya Edake, Akshata Naik\",\"doi\":\"10.2174/0118715230272263231103094710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation of the joints, leading to pain, swelling, and joint deformity. Effective management of RA involves the use of disease-modifying drugs that can slow down disease progression and alleviate symptoms. Among the potential targets for RA treatment is Bruton's tyrosine kinase (BTK), which plays a crucial role in B-cell signalling and contributes to the pathogenesis of RA.</p><p><strong>Aims: </strong>QSARINS (QSAR-INSUBRIA) is software used for the development and validation of Quantitative Structure-Activity Relationship (QSAR) analysis. In the present work, this software was explored for pharmacophore optimization of the pyrrolo-pyrimidine nucleus for anti-rheumatoid activity.</p><p><strong>Methods: </strong>A series of pyrrolo-pyrimidine derivatives were used to build the QSAR models. These models were generated to identify structural features that correlate significantly with the activity. We followed the assessment of statistical parameters to ensure thorough validation of all the QSAR models. The QSAR models demonstrating better statistical performance were selected, and descriptors of these models were analysed.</p><p><strong>Results: </strong>The results showed that the QSAR models were highly statistically robust and exhibited a strong external predictive ability. Their structural features were also deduced.</p><p><strong>Conclusion: </strong>This QSAR study provided crucial information about the specific molecular features that can be used for the optimization of the pharmacophores. This research provides valuable insights into the structural features essential for BTK inhibition and paves the way for the design and development of novel anti-rheumatic agents targeting BTK in RA.</p>\",\"PeriodicalId\":94368,\"journal\":{\"name\":\"Anti-inflammatory & anti-allergy agents in medicinal chemistry\",\"volume\":\" \",\"pages\":\"236-249\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-inflammatory & anti-allergy agents in medicinal chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0118715230272263231103094710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-inflammatory & anti-allergy agents in medicinal chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715230272263231103094710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

类风湿性关节炎(RA)是一种以关节炎症为特征的慢性自身免疫性疾病,可导致疼痛、肿胀和关节畸形。布鲁顿酪氨酸激酶(Bruton's tyrosine kinase, BTK)是RA治疗的潜在靶点之一,它在b细胞信号传导中起着至关重要的作用,并参与RA的发病机制。本研究利用该软件对吡咯嘧啶核的抗类风湿活性进行药效团优化。这项研究为BTK抑制的结构特征提供了有价值的见解,并为设计和开发针对RA中的BTK的新型抗风湿药铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of 7H-pyrrolo[2,3-d]pyrimidin-4-amine Derivatives Using QSARINS Tool as BTK Inhibitors for the Treatment of Rheumatoid Arthritis.

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation of the joints, leading to pain, swelling, and joint deformity. Effective management of RA involves the use of disease-modifying drugs that can slow down disease progression and alleviate symptoms. Among the potential targets for RA treatment is Bruton's tyrosine kinase (BTK), which plays a crucial role in B-cell signalling and contributes to the pathogenesis of RA.

Aims: QSARINS (QSAR-INSUBRIA) is software used for the development and validation of Quantitative Structure-Activity Relationship (QSAR) analysis. In the present work, this software was explored for pharmacophore optimization of the pyrrolo-pyrimidine nucleus for anti-rheumatoid activity.

Methods: A series of pyrrolo-pyrimidine derivatives were used to build the QSAR models. These models were generated to identify structural features that correlate significantly with the activity. We followed the assessment of statistical parameters to ensure thorough validation of all the QSAR models. The QSAR models demonstrating better statistical performance were selected, and descriptors of these models were analysed.

Results: The results showed that the QSAR models were highly statistically robust and exhibited a strong external predictive ability. Their structural features were also deduced.

Conclusion: This QSAR study provided crucial information about the specific molecular features that can be used for the optimization of the pharmacophores. This research provides valuable insights into the structural features essential for BTK inhibition and paves the way for the design and development of novel anti-rheumatic agents targeting BTK in RA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genistein Enhances the Beneficial Effects of Exercise on Antioxidant and Anti-Inflammatory Balance and Cardiomyopathy in Ovariectomized Diabetic Rats. A Comprehensive Review on Insect Repellent Agents: Medicinal Plants and Synthetic Compounds. A Review on Phytochemical Constituents Used as Current Treatment Strategies for Neurodegenerative Disease. Dry-feed Added Quercetin Mitigates Cyclophosphamide-induced Oxidative Stress, Inflammation and Gonadal Fibrosis in Adult Male Rats. Molecular Docking, Pharmacophore Modeling, and ADMET Prediction of Novel Heterocyclic Leads as Glucokinase Activators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1