基于admm的求解弹性需求交通分配问题的并行算法

IF 12.5 Q1 TRANSPORTATION Communications in Transportation Research Pub Date : 2023-11-27 DOI:10.1016/j.commtr.2023.100108
Kai Zhang , Honggang Zhang , Yu Dong , Yunchi Wu , Xinyuan Chen
{"title":"基于admm的求解弹性需求交通分配问题的并行算法","authors":"Kai Zhang ,&nbsp;Honggang Zhang ,&nbsp;Yu Dong ,&nbsp;Yunchi Wu ,&nbsp;Xinyuan Chen","doi":"10.1016/j.commtr.2023.100108","DOIUrl":null,"url":null,"abstract":"<div><p>Efficiently solving the user equilibrium traffic assignment problem with elastic demand (UE-TAPED) for transportation networks is a critical problem for transportation studies. Most existing UE-TAPED algorithms are designed using a sequential computing scheme, which cannot take advantage of advanced parallel computing power. Therefore, this study focuses on model decomposition and parallelization, proposing an origin-based formulation for UE-TAPED and proving an equivalent reformulation of the original problem. Furthermore, the alternative direction method of multipliers (ADMM) is employed to decompose the original problem into independent link-based subproblems, which can solve large-scale problems with small storage space. In addition, to enhance the efficiency of our algorithm, the parallel computing technology with optimal parallel computing schedule is implemented to solve the link-based subproblems. Numerical experiments are performed to validate the computation efficiency of the proposed parallel algorithm.</p></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":null,"pages":null},"PeriodicalIF":12.5000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772424723000197/pdfft?md5=9da8b537fd13184fc4bf030e1efbc56a&pid=1-s2.0-S2772424723000197-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An ADMM-based parallel algorithm for solving traffic assignment problem with elastic demand\",\"authors\":\"Kai Zhang ,&nbsp;Honggang Zhang ,&nbsp;Yu Dong ,&nbsp;Yunchi Wu ,&nbsp;Xinyuan Chen\",\"doi\":\"10.1016/j.commtr.2023.100108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Efficiently solving the user equilibrium traffic assignment problem with elastic demand (UE-TAPED) for transportation networks is a critical problem for transportation studies. Most existing UE-TAPED algorithms are designed using a sequential computing scheme, which cannot take advantage of advanced parallel computing power. Therefore, this study focuses on model decomposition and parallelization, proposing an origin-based formulation for UE-TAPED and proving an equivalent reformulation of the original problem. Furthermore, the alternative direction method of multipliers (ADMM) is employed to decompose the original problem into independent link-based subproblems, which can solve large-scale problems with small storage space. In addition, to enhance the efficiency of our algorithm, the parallel computing technology with optimal parallel computing schedule is implemented to solve the link-based subproblems. Numerical experiments are performed to validate the computation efficiency of the proposed parallel algorithm.</p></div>\",\"PeriodicalId\":100292,\"journal\":{\"name\":\"Communications in Transportation Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772424723000197/pdfft?md5=9da8b537fd13184fc4bf030e1efbc56a&pid=1-s2.0-S2772424723000197-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Transportation Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772424723000197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424723000197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

有效地解决交通网络弹性需求下的用户均衡交通分配问题是交通研究中的一个关键问题。现有的ue - tape算法大多采用顺序计算方案,无法充分利用先进的并行计算能力。因此,本研究将重点放在模型分解和并行化上,提出了一种基于原点的ue - tape公式,并证明了原始问题的等价重新公式。在此基础上,采用乘法器替代方向法(ADMM)将原问题分解为基于链路的独立子问题,可以在较小的存储空间下求解大规模问题。此外,为了提高算法的效率,采用最优并行计算调度的并行计算技术来求解基于链路的子问题。通过数值实验验证了所提并行算法的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An ADMM-based parallel algorithm for solving traffic assignment problem with elastic demand

Efficiently solving the user equilibrium traffic assignment problem with elastic demand (UE-TAPED) for transportation networks is a critical problem for transportation studies. Most existing UE-TAPED algorithms are designed using a sequential computing scheme, which cannot take advantage of advanced parallel computing power. Therefore, this study focuses on model decomposition and parallelization, proposing an origin-based formulation for UE-TAPED and proving an equivalent reformulation of the original problem. Furthermore, the alternative direction method of multipliers (ADMM) is employed to decompose the original problem into independent link-based subproblems, which can solve large-scale problems with small storage space. In addition, to enhance the efficiency of our algorithm, the parallel computing technology with optimal parallel computing schedule is implemented to solve the link-based subproblems. Numerical experiments are performed to validate the computation efficiency of the proposed parallel algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.20
自引率
0.00%
发文量
0
期刊最新文献
Harnessing multimodal large language models for traffic knowledge graph generation and decision-making Controllability test for nonlinear datatic systems Intelligent vehicle platooning transit A multi-functional simulation platform for on-demand ride service operations Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1