{"title":"基于Gaia DR3星表中恒星固有运动和径向速度的非线性星系旋转模型参数的确定","authors":"A. S. Tsvetkov, F. A. Amosov","doi":"10.1134/S1063773723060051","DOIUrl":null,"url":null,"abstract":"<p>We have solved the Ogorodnikov–Milne stellar-kinematics equations in the Galactic rectangular coordinate system based on the total velocities for a special sample of stars with radial velocities from the final Gaia Data Release 3 catalogue. We have found the region of applicability of the linear model and the regions that it describes poorly. We have constructed a second-order model that takes into account the peculiarities of stellar kinematics more accurately and showed its applicability for stars at distances up to 5 kpc.</p>","PeriodicalId":55443,"journal":{"name":"Astronomy Letters-A Journal of Astronomy and Space Astrophysics","volume":"49 6","pages":"331 - 344"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of the Parameters of a Nonlinear Kinematic Galactic Rotation Model Based on the Proper Motions and Radial Velocities of Stars from the Gaia DR3 Catalogue\",\"authors\":\"A. S. Tsvetkov, F. A. Amosov\",\"doi\":\"10.1134/S1063773723060051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We have solved the Ogorodnikov–Milne stellar-kinematics equations in the Galactic rectangular coordinate system based on the total velocities for a special sample of stars with radial velocities from the final Gaia Data Release 3 catalogue. We have found the region of applicability of the linear model and the regions that it describes poorly. We have constructed a second-order model that takes into account the peculiarities of stellar kinematics more accurately and showed its applicability for stars at distances up to 5 kpc.</p>\",\"PeriodicalId\":55443,\"journal\":{\"name\":\"Astronomy Letters-A Journal of Astronomy and Space Astrophysics\",\"volume\":\"49 6\",\"pages\":\"331 - 344\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy Letters-A Journal of Astronomy and Space Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063773723060051\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy Letters-A Journal of Astronomy and Space Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063773723060051","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Determination of the Parameters of a Nonlinear Kinematic Galactic Rotation Model Based on the Proper Motions and Radial Velocities of Stars from the Gaia DR3 Catalogue
We have solved the Ogorodnikov–Milne stellar-kinematics equations in the Galactic rectangular coordinate system based on the total velocities for a special sample of stars with radial velocities from the final Gaia Data Release 3 catalogue. We have found the region of applicability of the linear model and the regions that it describes poorly. We have constructed a second-order model that takes into account the peculiarities of stellar kinematics more accurately and showed its applicability for stars at distances up to 5 kpc.
期刊介绍:
Astronomy Letters is an international peer reviewed journal that publishes the results of original research on all aspects of modern astronomy and astrophysics including high energy astrophysics, cosmology, space astronomy, theoretical astrophysics, radio astronomy, extragalactic astronomy, stellar astronomy, and investigation of the Solar system.