{"title":"晶格畸变SnS2压电自fenton系统高效降解和解毒污染物","authors":"Runren Jiang, Guanghua Lu, Min Wang, Yufang Chen, Jianchao Liu, Zhenhua Yan, Haijiao Xie","doi":"10.1038/s41545-023-00293-3","DOIUrl":null,"url":null,"abstract":"Both piezoelectricity and self-Fenton catalysis are effective ways to degrade water pollution, but little research has combined them to construct a more efficient water pollution treatment method. Here, a Fe-doped SnS2 (Sn1-xFexS2) piezoelectric self-Fenton system was constructed, which shows superior water treatment performance. The best piezoelectric properties of the Sn0.97Fe0.03S2 system were verified by degrading rhodamine B (RhB). The toxicity analysis of degradation intermediates and solutions confirmed that the toxicity of RhB decreased after degradation. In addition, Kelvin probe force microscopy and photoelectrochemical analysis confirmed the better piezoelectric properties of Sn0.97Fe0.03S2. It has demonstrated the enhancement of systematic piezoelectricity by Fe lattice defects and the formation of self-Fenton by Fe as an active center in the degradation of RhB. In this work, an efficient piezoelectric and self-Fenton technology is constructed to remove organic pollutants from water, which is significant for developing water treatment technology.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":10.4000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-023-00293-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Lattice distortion SnS2 piezoelectric self-Fenton system for efficient degradation and detoxification of pollutants\",\"authors\":\"Runren Jiang, Guanghua Lu, Min Wang, Yufang Chen, Jianchao Liu, Zhenhua Yan, Haijiao Xie\",\"doi\":\"10.1038/s41545-023-00293-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Both piezoelectricity and self-Fenton catalysis are effective ways to degrade water pollution, but little research has combined them to construct a more efficient water pollution treatment method. Here, a Fe-doped SnS2 (Sn1-xFexS2) piezoelectric self-Fenton system was constructed, which shows superior water treatment performance. The best piezoelectric properties of the Sn0.97Fe0.03S2 system were verified by degrading rhodamine B (RhB). The toxicity analysis of degradation intermediates and solutions confirmed that the toxicity of RhB decreased after degradation. In addition, Kelvin probe force microscopy and photoelectrochemical analysis confirmed the better piezoelectric properties of Sn0.97Fe0.03S2. It has demonstrated the enhancement of systematic piezoelectricity by Fe lattice defects and the formation of self-Fenton by Fe as an active center in the degradation of RhB. In this work, an efficient piezoelectric and self-Fenton technology is constructed to remove organic pollutants from water, which is significant for developing water treatment technology.\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41545-023-00293-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41545-023-00293-3\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-023-00293-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Lattice distortion SnS2 piezoelectric self-Fenton system for efficient degradation and detoxification of pollutants
Both piezoelectricity and self-Fenton catalysis are effective ways to degrade water pollution, but little research has combined them to construct a more efficient water pollution treatment method. Here, a Fe-doped SnS2 (Sn1-xFexS2) piezoelectric self-Fenton system was constructed, which shows superior water treatment performance. The best piezoelectric properties of the Sn0.97Fe0.03S2 system were verified by degrading rhodamine B (RhB). The toxicity analysis of degradation intermediates and solutions confirmed that the toxicity of RhB decreased after degradation. In addition, Kelvin probe force microscopy and photoelectrochemical analysis confirmed the better piezoelectric properties of Sn0.97Fe0.03S2. It has demonstrated the enhancement of systematic piezoelectricity by Fe lattice defects and the formation of self-Fenton by Fe as an active center in the degradation of RhB. In this work, an efficient piezoelectric and self-Fenton technology is constructed to remove organic pollutants from water, which is significant for developing water treatment technology.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.