{"title":"岩藻黄素通过改变生长、粘附和细胞周期信号抑制乙状结肠直肠癌的发展。","authors":"Masaru Terasaki, Kirara Tsuruoka, Takuji Tanaka, Hayato Maeda, Masaki Shibata, Kazuo Miyashita, Yukihide Kanemitsu, Shigeki Sekine, Mami Takahashi, Shigehiro Yagishita, Akinobu Hamada","doi":"10.21873/cgp.20416","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Fucoxanthin (Fx), a dietary marine xanthophyll, exerts potent anticancer effects in various colorectal cancer (CRC) animal models. However, therapeutic effects of Fx in human cancer tissues remain unclear. A patient-derived xenograft (PDX) mouse model transplanted with cancer tissues from patients is widely accepted as the best preclinical model for evaluating the anticancer potential of drug candidates.</p><p><strong>Materials and methods: </strong>Herein, we investigated the anticancer effects of Fx in PDX mice transplanted with cancer tissues derived from a patient with CRC (CRC-PDX) using LC-MS/MS- and western blot-based proteome analysis.</p><p><strong>Results: </strong>The tumor in the patient with CRC was a primary adenocarcinoma (T3N0M0, stage II) showing mutations of certain genes that were tumor protein p53 (TP53), AT-rich interaction domain 1A (ARID1A), neuroblastoma RAS viral oncogene homolog (NRAS), and PMS1 homolog 2 (PMS2). Administration of Fx significantly suppressed the tumor growth (0.6-fold) and tended to induce differentiation in CRC-PDX mice. Fx up-regulated glycanated-decorin (Gc-DCN) expression, and down-regulated Kinetochore-associated protein DSN1 homolog (DSN1), phospho(p) focal adhesion kinase (pFAK)(Tyr<sup>397</sup>), pPaxillin(Tyr<sup>31</sup>), and c-MYC involved in growth, adhesion, and/or cell cycle, in the tumors of CRC-PDX mice than in control mice. Alterations in the five proteins were consistent with those in human CRC HT-29 and HCT116 cells treated with fucoxanthinol (FxOH, a major metabolite of Fx).</p><p><strong>Conclusion: </strong>Fx suppresses development of human-like CRC tissues, especially through growth, adhesion, and cell cycle signals.</p>","PeriodicalId":9516,"journal":{"name":"Cancer Genomics & Proteomics","volume":"20 6suppl","pages":"686-705"},"PeriodicalIF":2.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687734/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fucoxanthin Inhibits Development of Sigmoid Colorectal Cancer in a PDX Model With Alterations of Growth, Adhesion, and Cell Cycle Signals.\",\"authors\":\"Masaru Terasaki, Kirara Tsuruoka, Takuji Tanaka, Hayato Maeda, Masaki Shibata, Kazuo Miyashita, Yukihide Kanemitsu, Shigeki Sekine, Mami Takahashi, Shigehiro Yagishita, Akinobu Hamada\",\"doi\":\"10.21873/cgp.20416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aim: </strong>Fucoxanthin (Fx), a dietary marine xanthophyll, exerts potent anticancer effects in various colorectal cancer (CRC) animal models. However, therapeutic effects of Fx in human cancer tissues remain unclear. A patient-derived xenograft (PDX) mouse model transplanted with cancer tissues from patients is widely accepted as the best preclinical model for evaluating the anticancer potential of drug candidates.</p><p><strong>Materials and methods: </strong>Herein, we investigated the anticancer effects of Fx in PDX mice transplanted with cancer tissues derived from a patient with CRC (CRC-PDX) using LC-MS/MS- and western blot-based proteome analysis.</p><p><strong>Results: </strong>The tumor in the patient with CRC was a primary adenocarcinoma (T3N0M0, stage II) showing mutations of certain genes that were tumor protein p53 (TP53), AT-rich interaction domain 1A (ARID1A), neuroblastoma RAS viral oncogene homolog (NRAS), and PMS1 homolog 2 (PMS2). Administration of Fx significantly suppressed the tumor growth (0.6-fold) and tended to induce differentiation in CRC-PDX mice. Fx up-regulated glycanated-decorin (Gc-DCN) expression, and down-regulated Kinetochore-associated protein DSN1 homolog (DSN1), phospho(p) focal adhesion kinase (pFAK)(Tyr<sup>397</sup>), pPaxillin(Tyr<sup>31</sup>), and c-MYC involved in growth, adhesion, and/or cell cycle, in the tumors of CRC-PDX mice than in control mice. Alterations in the five proteins were consistent with those in human CRC HT-29 and HCT116 cells treated with fucoxanthinol (FxOH, a major metabolite of Fx).</p><p><strong>Conclusion: </strong>Fx suppresses development of human-like CRC tissues, especially through growth, adhesion, and cell cycle signals.</p>\",\"PeriodicalId\":9516,\"journal\":{\"name\":\"Cancer Genomics & Proteomics\",\"volume\":\"20 6suppl\",\"pages\":\"686-705\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687734/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Genomics & Proteomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21873/cgp.20416\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genomics & Proteomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21873/cgp.20416","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Fucoxanthin Inhibits Development of Sigmoid Colorectal Cancer in a PDX Model With Alterations of Growth, Adhesion, and Cell Cycle Signals.
Background/aim: Fucoxanthin (Fx), a dietary marine xanthophyll, exerts potent anticancer effects in various colorectal cancer (CRC) animal models. However, therapeutic effects of Fx in human cancer tissues remain unclear. A patient-derived xenograft (PDX) mouse model transplanted with cancer tissues from patients is widely accepted as the best preclinical model for evaluating the anticancer potential of drug candidates.
Materials and methods: Herein, we investigated the anticancer effects of Fx in PDX mice transplanted with cancer tissues derived from a patient with CRC (CRC-PDX) using LC-MS/MS- and western blot-based proteome analysis.
Results: The tumor in the patient with CRC was a primary adenocarcinoma (T3N0M0, stage II) showing mutations of certain genes that were tumor protein p53 (TP53), AT-rich interaction domain 1A (ARID1A), neuroblastoma RAS viral oncogene homolog (NRAS), and PMS1 homolog 2 (PMS2). Administration of Fx significantly suppressed the tumor growth (0.6-fold) and tended to induce differentiation in CRC-PDX mice. Fx up-regulated glycanated-decorin (Gc-DCN) expression, and down-regulated Kinetochore-associated protein DSN1 homolog (DSN1), phospho(p) focal adhesion kinase (pFAK)(Tyr397), pPaxillin(Tyr31), and c-MYC involved in growth, adhesion, and/or cell cycle, in the tumors of CRC-PDX mice than in control mice. Alterations in the five proteins were consistent with those in human CRC HT-29 and HCT116 cells treated with fucoxanthinol (FxOH, a major metabolite of Fx).
Conclusion: Fx suppresses development of human-like CRC tissues, especially through growth, adhesion, and cell cycle signals.
期刊介绍:
Cancer Genomics & Proteomics (CGP) is an international peer-reviewed journal designed to publish rapidly high quality articles and reviews on the application of genomic and proteomic technology to basic, experimental and clinical cancer research. In this site you may find information concerning the editorial board, editorial policy, issue contents, subscriptions, submission of manuscripts and advertising. The first issue of CGP circulated in January 2004.
Cancer Genomics & Proteomics is a journal of the International Institute of Anticancer Research. From January 2013 CGP is converted to an online-only open access journal.
Cancer Genomics & Proteomics supports (a) the aims and the research projects of the INTERNATIONAL INSTITUTE OF ANTICANCER RESEARCH and (b) the organization of the INTERNATIONAL CONFERENCES OF ANTICANCER RESEARCH.