Wenying Xu, Jie Wang, Xin-Ni Li, Jingxue Liang, Lu Song, Yi Wu, Zhenguo Liu, Bomin Sun, Wei-Guang Li
{"title":"深层脑刺激治疗帕金森病的好处背后的神经元和突触适应。","authors":"Wenying Xu, Jie Wang, Xin-Ni Li, Jingxue Liang, Lu Song, Yi Wu, Zhenguo Liu, Bomin Sun, Wei-Guang Li","doi":"10.1186/s40035-023-00390-w","DOIUrl":null,"url":null,"abstract":"<p><p>Deep brain stimulation (DBS) is a well-established and effective treatment for patients with advanced Parkinson's disease (PD), yet its underlying mechanisms remain enigmatic. Optogenetics, primarily conducted in animal models, provides a unique approach that allows cell type- and projection-specific modulation that mirrors the frequency-dependent stimulus effects of DBS. Opto-DBS research in animal models plays a pivotal role in unraveling the neuronal and synaptic adaptations that contribute to the efficacy of DBS in PD treatment. DBS-induced neuronal responses rely on a complex interplay between the distributions of presynaptic inputs, frequency-dependent synaptic depression, and the intrinsic excitability of postsynaptic neurons. This orchestration leads to conversion of firing patterns, enabling both antidromic and orthodromic modulation of neural circuits. Understanding these mechanisms is vital for decoding position- and programming-dependent effects of DBS. Furthermore, patterned stimulation is emerging as a promising strategy yielding long-lasting therapeutic benefits. Research on the neuronal and synaptic adaptations to DBS may pave the way for the development of more enduring and precise modulation patterns. Advanced technologies, such as adaptive DBS or directional electrodes, can also be integrated for circuit-specific neuromodulation. These insights hold the potential to greatly improve the effectiveness of DBS and advance PD treatment to new levels.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"12 1","pages":"55"},"PeriodicalIF":10.8000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688037/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neuronal and synaptic adaptations underlying the benefits of deep brain stimulation for Parkinson's disease.\",\"authors\":\"Wenying Xu, Jie Wang, Xin-Ni Li, Jingxue Liang, Lu Song, Yi Wu, Zhenguo Liu, Bomin Sun, Wei-Guang Li\",\"doi\":\"10.1186/s40035-023-00390-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep brain stimulation (DBS) is a well-established and effective treatment for patients with advanced Parkinson's disease (PD), yet its underlying mechanisms remain enigmatic. Optogenetics, primarily conducted in animal models, provides a unique approach that allows cell type- and projection-specific modulation that mirrors the frequency-dependent stimulus effects of DBS. Opto-DBS research in animal models plays a pivotal role in unraveling the neuronal and synaptic adaptations that contribute to the efficacy of DBS in PD treatment. DBS-induced neuronal responses rely on a complex interplay between the distributions of presynaptic inputs, frequency-dependent synaptic depression, and the intrinsic excitability of postsynaptic neurons. This orchestration leads to conversion of firing patterns, enabling both antidromic and orthodromic modulation of neural circuits. Understanding these mechanisms is vital for decoding position- and programming-dependent effects of DBS. Furthermore, patterned stimulation is emerging as a promising strategy yielding long-lasting therapeutic benefits. Research on the neuronal and synaptic adaptations to DBS may pave the way for the development of more enduring and precise modulation patterns. Advanced technologies, such as adaptive DBS or directional electrodes, can also be integrated for circuit-specific neuromodulation. These insights hold the potential to greatly improve the effectiveness of DBS and advance PD treatment to new levels.</p>\",\"PeriodicalId\":23269,\"journal\":{\"name\":\"Translational Neurodegeneration\",\"volume\":\"12 1\",\"pages\":\"55\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688037/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Neurodegeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40035-023-00390-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40035-023-00390-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Neuronal and synaptic adaptations underlying the benefits of deep brain stimulation for Parkinson's disease.
Deep brain stimulation (DBS) is a well-established and effective treatment for patients with advanced Parkinson's disease (PD), yet its underlying mechanisms remain enigmatic. Optogenetics, primarily conducted in animal models, provides a unique approach that allows cell type- and projection-specific modulation that mirrors the frequency-dependent stimulus effects of DBS. Opto-DBS research in animal models plays a pivotal role in unraveling the neuronal and synaptic adaptations that contribute to the efficacy of DBS in PD treatment. DBS-induced neuronal responses rely on a complex interplay between the distributions of presynaptic inputs, frequency-dependent synaptic depression, and the intrinsic excitability of postsynaptic neurons. This orchestration leads to conversion of firing patterns, enabling both antidromic and orthodromic modulation of neural circuits. Understanding these mechanisms is vital for decoding position- and programming-dependent effects of DBS. Furthermore, patterned stimulation is emerging as a promising strategy yielding long-lasting therapeutic benefits. Research on the neuronal and synaptic adaptations to DBS may pave the way for the development of more enduring and precise modulation patterns. Advanced technologies, such as adaptive DBS or directional electrodes, can also be integrated for circuit-specific neuromodulation. These insights hold the potential to greatly improve the effectiveness of DBS and advance PD treatment to new levels.
期刊介绍:
Translational Neurodegeneration, an open-access, peer-reviewed journal, addresses all aspects of neurodegenerative diseases. It serves as a prominent platform for research, therapeutics, and education, fostering discussions and insights across basic, translational, and clinical research domains. Covering Parkinson's disease, Alzheimer's disease, and other neurodegenerative conditions, it welcomes contributions on epidemiology, pathogenesis, diagnosis, prevention, drug development, rehabilitation, and drug delivery. Scientists, clinicians, and physician-scientists are encouraged to share their work in this specialized journal tailored to their fields.