为转移性乳腺癌设计一个深度学习驱动的资源高效诊断系统:减少临床诊断的长时间延误,提高发展中国家患者的生存率。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Cancer Informatics Pub Date : 2023-11-26 eCollection Date: 2023-01-01 DOI:10.1177/11769351231214446
William Gao, Dayong Wang, Yi Huang
{"title":"为转移性乳腺癌设计一个深度学习驱动的资源高效诊断系统:减少临床诊断的长时间延误,提高发展中国家患者的生存率。","authors":"William Gao, Dayong Wang, Yi Huang","doi":"10.1177/11769351231214446","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is one of the leading causes of cancer mortality. Breast cancer patients in developing countries, especially sub-Saharan Africa, South Asia, and South America, suffer from the highest mortality rate in the world. One crucial factor contributing to the global disparity in mortality rate is long delay of diagnosis due to a severe shortage of trained pathologists, which consequently has led to a large proportion of late-stage presentation at diagnosis. To tackle this critical healthcare disparity, we have developed a deep learning-based diagnosis system for metastatic breast cancer that can achieve high diagnostic accuracy as well as computational efficiency and mobile readiness suitable for an under-resourced environment. We evaluated 4 Convolutional Neural Network (CNN) architectures: MobileNetV2, VGG16, ResNet50 and ResNet101. The MobileNetV2-based diagnostic model outperformed the more complex VGG16, ResNet50 and ResNet101 models in diagnostic accuracy, model generalization, and model training efficiency. The ROC AUC of MobilenetV2 (0.933, 95% CI: 0.930, 0.936) was higher than VGG16 (0.911, 95% CI: 0.908, 0.915), ResNet50 (0.869, 95% CI: 0.866, 0.873), and ResNet101 (0.873, 95% CI: 0.869, 0.876). The time per inference step for the MobileNetV2 model (15 ms/step) was substantially lower than that of VGG16 (48 ms/step), ResNet50 (37 ms/step), and ResNet110 (56 ms/step). The visual comparisons between the model prediction and ground truth have demonstrated that the MobileNetV2 diagnostic models can identify very small cancerous nodes embedded in a large area of normal cells which is challenging for manual image analysis. Equally Important, the light weight MobleNetV2 models were computationally efficient and ready for mobile devices or devices of low computational power. These advances empower the development of a resource-efficient and high performing AI-based metastatic breast cancer diagnostic system that can adapt to under-resourced healthcare facilities in developing countries.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":"22 ","pages":"11769351231214446"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683375/pdf/","citationCount":"2","resultStr":"{\"title\":\"Designing a Deep Learning-Driven Resource-Efficient Diagnostic System for Metastatic Breast Cancer: Reducing Long Delays of Clinical Diagnosis and Improving Patient Survival in Developing Countries.\",\"authors\":\"William Gao, Dayong Wang, Yi Huang\",\"doi\":\"10.1177/11769351231214446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer is one of the leading causes of cancer mortality. Breast cancer patients in developing countries, especially sub-Saharan Africa, South Asia, and South America, suffer from the highest mortality rate in the world. One crucial factor contributing to the global disparity in mortality rate is long delay of diagnosis due to a severe shortage of trained pathologists, which consequently has led to a large proportion of late-stage presentation at diagnosis. To tackle this critical healthcare disparity, we have developed a deep learning-based diagnosis system for metastatic breast cancer that can achieve high diagnostic accuracy as well as computational efficiency and mobile readiness suitable for an under-resourced environment. We evaluated 4 Convolutional Neural Network (CNN) architectures: MobileNetV2, VGG16, ResNet50 and ResNet101. The MobileNetV2-based diagnostic model outperformed the more complex VGG16, ResNet50 and ResNet101 models in diagnostic accuracy, model generalization, and model training efficiency. The ROC AUC of MobilenetV2 (0.933, 95% CI: 0.930, 0.936) was higher than VGG16 (0.911, 95% CI: 0.908, 0.915), ResNet50 (0.869, 95% CI: 0.866, 0.873), and ResNet101 (0.873, 95% CI: 0.869, 0.876). The time per inference step for the MobileNetV2 model (15 ms/step) was substantially lower than that of VGG16 (48 ms/step), ResNet50 (37 ms/step), and ResNet110 (56 ms/step). The visual comparisons between the model prediction and ground truth have demonstrated that the MobileNetV2 diagnostic models can identify very small cancerous nodes embedded in a large area of normal cells which is challenging for manual image analysis. Equally Important, the light weight MobleNetV2 models were computationally efficient and ready for mobile devices or devices of low computational power. These advances empower the development of a resource-efficient and high performing AI-based metastatic breast cancer diagnostic system that can adapt to under-resourced healthcare facilities in developing countries.</p>\",\"PeriodicalId\":35418,\"journal\":{\"name\":\"Cancer Informatics\",\"volume\":\"22 \",\"pages\":\"11769351231214446\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683375/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11769351231214446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11769351231214446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

乳腺癌是导致癌症死亡的主要原因之一。发展中国家,特别是撒哈拉以南非洲、南亚和南美洲的乳腺癌患者死亡率是世界上最高的。造成全球死亡率差异的一个关键因素是,由于训练有素的病理学家严重短缺,导致诊断长期拖延,从而导致很大一部分患者在诊断时出现晚期症状。为了解决这一关键的医疗保健差距,我们开发了一种基于深度学习的转移性乳腺癌诊断系统,该系统可以实现高诊断准确性,以及适用于资源不足环境的计算效率和移动准备。我们评估了4种卷积神经网络(CNN)架构:MobileNetV2、VGG16、ResNet50和ResNet101。基于mobilenetv2的诊断模型在诊断精度、模型泛化和模型训练效率方面优于更复杂的VGG16、ResNet50和ResNet101模型。MobilenetV2的ROC AUC (0.933, 95% CI: 0.930, 0.936)高于VGG16 (0.911, 95% CI: 0.908, 0.915)、ResNet50 (0.869, 95% CI: 0.866, 0.873)和ResNet101 (0.873, 95% CI: 0.869, 0.876)。MobileNetV2模型的每个推理步骤的时间(15 ms/步)大大低于VGG16 (48 ms/步),ResNet50 (37 ms/步)和ResNet110 (56 ms/步)。模型预测和实际情况之间的视觉比较表明,MobileNetV2诊断模型可以识别嵌入在大面积正常细胞中的非常小的癌节点,这对于人工图像分析来说是具有挑战性的。同样重要的是,轻量级的MobleNetV2模型具有计算效率,可用于移动设备或低计算能力的设备。这些进步有助于开发资源高效和高性能的基于人工智能的转移性乳腺癌诊断系统,以适应发展中国家资源不足的医疗机构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing a Deep Learning-Driven Resource-Efficient Diagnostic System for Metastatic Breast Cancer: Reducing Long Delays of Clinical Diagnosis and Improving Patient Survival in Developing Countries.

Breast cancer is one of the leading causes of cancer mortality. Breast cancer patients in developing countries, especially sub-Saharan Africa, South Asia, and South America, suffer from the highest mortality rate in the world. One crucial factor contributing to the global disparity in mortality rate is long delay of diagnosis due to a severe shortage of trained pathologists, which consequently has led to a large proportion of late-stage presentation at diagnosis. To tackle this critical healthcare disparity, we have developed a deep learning-based diagnosis system for metastatic breast cancer that can achieve high diagnostic accuracy as well as computational efficiency and mobile readiness suitable for an under-resourced environment. We evaluated 4 Convolutional Neural Network (CNN) architectures: MobileNetV2, VGG16, ResNet50 and ResNet101. The MobileNetV2-based diagnostic model outperformed the more complex VGG16, ResNet50 and ResNet101 models in diagnostic accuracy, model generalization, and model training efficiency. The ROC AUC of MobilenetV2 (0.933, 95% CI: 0.930, 0.936) was higher than VGG16 (0.911, 95% CI: 0.908, 0.915), ResNet50 (0.869, 95% CI: 0.866, 0.873), and ResNet101 (0.873, 95% CI: 0.869, 0.876). The time per inference step for the MobileNetV2 model (15 ms/step) was substantially lower than that of VGG16 (48 ms/step), ResNet50 (37 ms/step), and ResNet110 (56 ms/step). The visual comparisons between the model prediction and ground truth have demonstrated that the MobileNetV2 diagnostic models can identify very small cancerous nodes embedded in a large area of normal cells which is challenging for manual image analysis. Equally Important, the light weight MobleNetV2 models were computationally efficient and ready for mobile devices or devices of low computational power. These advances empower the development of a resource-efficient and high performing AI-based metastatic breast cancer diagnostic system that can adapt to under-resourced healthcare facilities in developing countries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Informatics
Cancer Informatics Medicine-Oncology
CiteScore
3.00
自引率
5.00%
发文量
30
审稿时长
8 weeks
期刊介绍: The field of cancer research relies on advances in many other disciplines, including omics technology, mass spectrometry, radio imaging, computer science, and biostatistics. Cancer Informatics provides open access to peer-reviewed high-quality manuscripts reporting bioinformatics analysis of molecular genetics and/or clinical data pertaining to cancer, emphasizing the use of machine learning, artificial intelligence, statistical algorithms, advanced imaging techniques, data visualization, and high-throughput technologies. As the leading journal dedicated exclusively to the report of the use of computational methods in cancer research and practice, Cancer Informatics leverages methodological improvements in systems biology, genomics, proteomics, metabolomics, and molecular biochemistry into the fields of cancer detection, treatment, classification, risk-prediction, prevention, outcome, and modeling.
期刊最新文献
Detecting the Tumor Prognostic Factors From the YTH Domain Family Through Integrative Pan-Cancer Analysis. Unveiling Recurrence Patterns: Analyzing Predictive Risk Factors for Breast Cancer Recurrence after Surgery. Understanding the Biological Basis of Polygenic Risk Scores and Disparities in Prostate Cancer: A Comprehensive Genomic Analysis. Machine Learning for Dynamic Prognostication of Patients With Hepatocellular Carcinoma Using Time-Series Data: Survival Path Versus Dynamic-DeepHit HCC Model. Advancements and Challenges in the Image-Based Diagnosis of Lung and Colon Cancer: A Comprehensive Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1