{"title":"虚拟板块:充分利用高内容屏幕。","authors":"Inbal Shapira Lots, Iris Alroy","doi":"10.1016/j.slasd.2023.11.004","DOIUrl":null,"url":null,"abstract":"<div><p>High content screening (HCS) is becoming widely adopted as a high throughput screening modality, using hundred-of-thousands compounds library. The use of machine learning and artificial intelligence in image analysis is amplifying this trend. Another factor is the recognition that diverse cell phenotypes can be associated with changes in biological pathways relevant to disease processes. There are numerous challenges in HCS campaigns. These include limited ability to support replicates, low availability of precious and unique cells or reagents, high number of experimental batches, lengthy preparation of cells for imaging, image acquisition time (45–60 min per plate) and image processing time, deterioration of image quality with time post cell fixation and variability within wells and batches. To take advantage of the data in HCS, cell population based rather than well-based analyses are required. Historically, statistical analysis and hypothesis testing played only a limited role in non-high content high throughput campaigns. Thus, only a limited number of standard statistical criteria for hit selection in HCS have been developed so far. In addition to complex biological content in HCS campaigns, additional variability is impacted by cell and reagent handling and by instruments which may malfunction or perform unevenly. Together these can cause a significant number of wells or plates to fail. Here we describe an automated approach for hit analysis and detection in HCS. Our approach automates HCS hit detection using a methodology that is based on a documented statistical framework. We introduce the <em>Virtual Plate</em> concept in which selected wells from different plates are collated into a new, virtual plate. This allows the rescue and analysis of compound wells which have failed due to technical issues as well as to collect hit wells into one plate, allowing the user easier access to the hit data.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"29 1","pages":"Pages 77-85"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555223000825/pdfft?md5=d5cdda9df9597ebac39e264c5b0778d3&pid=1-s2.0-S2472555223000825-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Virtual plates: Getting the best out of high content screens\",\"authors\":\"Inbal Shapira Lots, Iris Alroy\",\"doi\":\"10.1016/j.slasd.2023.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High content screening (HCS) is becoming widely adopted as a high throughput screening modality, using hundred-of-thousands compounds library. The use of machine learning and artificial intelligence in image analysis is amplifying this trend. Another factor is the recognition that diverse cell phenotypes can be associated with changes in biological pathways relevant to disease processes. There are numerous challenges in HCS campaigns. These include limited ability to support replicates, low availability of precious and unique cells or reagents, high number of experimental batches, lengthy preparation of cells for imaging, image acquisition time (45–60 min per plate) and image processing time, deterioration of image quality with time post cell fixation and variability within wells and batches. To take advantage of the data in HCS, cell population based rather than well-based analyses are required. Historically, statistical analysis and hypothesis testing played only a limited role in non-high content high throughput campaigns. Thus, only a limited number of standard statistical criteria for hit selection in HCS have been developed so far. In addition to complex biological content in HCS campaigns, additional variability is impacted by cell and reagent handling and by instruments which may malfunction or perform unevenly. Together these can cause a significant number of wells or plates to fail. Here we describe an automated approach for hit analysis and detection in HCS. Our approach automates HCS hit detection using a methodology that is based on a documented statistical framework. We introduce the <em>Virtual Plate</em> concept in which selected wells from different plates are collated into a new, virtual plate. This allows the rescue and analysis of compound wells which have failed due to technical issues as well as to collect hit wells into one plate, allowing the user easier access to the hit data.</p></div>\",\"PeriodicalId\":21764,\"journal\":{\"name\":\"SLAS Discovery\",\"volume\":\"29 1\",\"pages\":\"Pages 77-85\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2472555223000825/pdfft?md5=d5cdda9df9597ebac39e264c5b0778d3&pid=1-s2.0-S2472555223000825-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Discovery\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472555223000825\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Discovery","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555223000825","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Virtual plates: Getting the best out of high content screens
High content screening (HCS) is becoming widely adopted as a high throughput screening modality, using hundred-of-thousands compounds library. The use of machine learning and artificial intelligence in image analysis is amplifying this trend. Another factor is the recognition that diverse cell phenotypes can be associated with changes in biological pathways relevant to disease processes. There are numerous challenges in HCS campaigns. These include limited ability to support replicates, low availability of precious and unique cells or reagents, high number of experimental batches, lengthy preparation of cells for imaging, image acquisition time (45–60 min per plate) and image processing time, deterioration of image quality with time post cell fixation and variability within wells and batches. To take advantage of the data in HCS, cell population based rather than well-based analyses are required. Historically, statistical analysis and hypothesis testing played only a limited role in non-high content high throughput campaigns. Thus, only a limited number of standard statistical criteria for hit selection in HCS have been developed so far. In addition to complex biological content in HCS campaigns, additional variability is impacted by cell and reagent handling and by instruments which may malfunction or perform unevenly. Together these can cause a significant number of wells or plates to fail. Here we describe an automated approach for hit analysis and detection in HCS. Our approach automates HCS hit detection using a methodology that is based on a documented statistical framework. We introduce the Virtual Plate concept in which selected wells from different plates are collated into a new, virtual plate. This allows the rescue and analysis of compound wells which have failed due to technical issues as well as to collect hit wells into one plate, allowing the user easier access to the hit data.
期刊介绍:
Advancing Life Sciences R&D: SLAS Discovery reports how scientists develop and utilize novel technologies and/or approaches to provide and characterize chemical and biological tools to understand and treat human disease.
SLAS Discovery is a peer-reviewed journal that publishes scientific reports that enable and improve target validation, evaluate current drug discovery technologies, provide novel research tools, and incorporate research approaches that enhance depth of knowledge and drug discovery success.
SLAS Discovery emphasizes scientific and technical advances in target identification/validation (including chemical probes, RNA silencing, gene editing technologies); biomarker discovery; assay development; virtual, medium- or high-throughput screening (biochemical and biological, biophysical, phenotypic, toxicological, ADME); lead generation/optimization; chemical biology; and informatics (data analysis, image analysis, statistics, bio- and chemo-informatics). Review articles on target biology, new paradigms in drug discovery and advances in drug discovery technologies.
SLAS Discovery is of particular interest to those involved in analytical chemistry, applied microbiology, automation, biochemistry, bioengineering, biomedical optics, biotechnology, bioinformatics, cell biology, DNA science and technology, genetics, information technology, medicinal chemistry, molecular biology, natural products chemistry, organic chemistry, pharmacology, spectroscopy, and toxicology.
SLAS Discovery is a member of the Committee on Publication Ethics (COPE) and was published previously (1996-2016) as the Journal of Biomolecular Screening (JBS).