气候变化对多兆瓦浮式梁式风力涡轮机设计的影响

IF 4 2区 工程技术 Q1 ENGINEERING, CIVIL Marine Structures Pub Date : 2023-11-29 DOI:10.1016/j.marstruc.2023.103547
Maria James , Sumanta Haldar , Subhamoy Bhattacharya
{"title":"气候变化对多兆瓦浮式梁式风力涡轮机设计的影响","authors":"Maria James ,&nbsp;Sumanta Haldar ,&nbsp;Subhamoy Bhattacharya","doi":"10.1016/j.marstruc.2023.103547","DOIUrl":null,"url":null,"abstract":"<div><p>Increased frequency and intensity of extreme events can make offshore constructions unsafe due to the rapidly shifting wind-wave pattern. The consequences of climate change are disregarded by the current performance-based design of offshore wind turbines (OWT). The Statistical Downscaling Model (SDSM) and Artificial Neural Network (ANN) algorithm are used to present a simplified approach to enable the inclusion of future climatic projections in the design of spar-floating wind turbines. A two-variable statistical equation employing an Artificial Neural Network is established for calculating wind-induced wave height for the North Sea and West Coast of India, which is a valuable parameter for the site-specific design of offshore constructions. Under the SSP2-4.5 scenario, the North Sea's most likely wind speed is anticipated to decrease by 11 %, whereas the west coast of India experiences a slight decrease in wind speed. Serviceability responses, such as tower deflection, rotation, and nacelle acceleration, are expected to rise by 8–10 %. In contrast, a decrease in these responses is projected in the North Sea due to a decrease in future wind speed and wave height. Climate change has a greater impact on shutdown conditions than on normal operations, primarily due to the pronounced shifts in extreme climate conditions.</p></div>","PeriodicalId":49879,"journal":{"name":"Marine Structures","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0951833923001806/pdfft?md5=7d1477e40d9caaaf8c1eeac59bc2dad5&pid=1-s2.0-S0951833923001806-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Impact of climate change on the design of multi-megawatt spar floating wind turbines\",\"authors\":\"Maria James ,&nbsp;Sumanta Haldar ,&nbsp;Subhamoy Bhattacharya\",\"doi\":\"10.1016/j.marstruc.2023.103547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Increased frequency and intensity of extreme events can make offshore constructions unsafe due to the rapidly shifting wind-wave pattern. The consequences of climate change are disregarded by the current performance-based design of offshore wind turbines (OWT). The Statistical Downscaling Model (SDSM) and Artificial Neural Network (ANN) algorithm are used to present a simplified approach to enable the inclusion of future climatic projections in the design of spar-floating wind turbines. A two-variable statistical equation employing an Artificial Neural Network is established for calculating wind-induced wave height for the North Sea and West Coast of India, which is a valuable parameter for the site-specific design of offshore constructions. Under the SSP2-4.5 scenario, the North Sea's most likely wind speed is anticipated to decrease by 11 %, whereas the west coast of India experiences a slight decrease in wind speed. Serviceability responses, such as tower deflection, rotation, and nacelle acceleration, are expected to rise by 8–10 %. In contrast, a decrease in these responses is projected in the North Sea due to a decrease in future wind speed and wave height. Climate change has a greater impact on shutdown conditions than on normal operations, primarily due to the pronounced shifts in extreme climate conditions.</p></div>\",\"PeriodicalId\":49879,\"journal\":{\"name\":\"Marine Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0951833923001806/pdfft?md5=7d1477e40d9caaaf8c1eeac59bc2dad5&pid=1-s2.0-S0951833923001806-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951833923001806\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951833923001806","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

由于风浪模式的快速变化,极端事件的频率和强度的增加可能使海上建筑变得不安全。目前基于性能的海上风力涡轮机(OWT)设计忽视了气候变化的后果。采用统计降尺度模型(SDSM)和人工神经网络(ANN)算法提出了一种简化的方法,使未来的气候预测能够包括在桅杆式风力涡轮机的设计中。本文利用人工神经网络建立了计算印度北海和西海岸风致波高的双变量统计方程,为海上工程的选址设计提供了有价值的参数。在SSP2-4.5情景下,北海最有可能的风速预计将下降11%,而印度西海岸的风速则略有下降。可维护性响应,如塔架偏转、旋转和机舱加速,预计将提高8 - 10%。相反,由于未来风速和浪高的降低,预计北海的这些响应会减少。气候变化对停运条件的影响大于对正常运行的影响,这主要是由于极端气候条件的显著变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of climate change on the design of multi-megawatt spar floating wind turbines

Increased frequency and intensity of extreme events can make offshore constructions unsafe due to the rapidly shifting wind-wave pattern. The consequences of climate change are disregarded by the current performance-based design of offshore wind turbines (OWT). The Statistical Downscaling Model (SDSM) and Artificial Neural Network (ANN) algorithm are used to present a simplified approach to enable the inclusion of future climatic projections in the design of spar-floating wind turbines. A two-variable statistical equation employing an Artificial Neural Network is established for calculating wind-induced wave height for the North Sea and West Coast of India, which is a valuable parameter for the site-specific design of offshore constructions. Under the SSP2-4.5 scenario, the North Sea's most likely wind speed is anticipated to decrease by 11 %, whereas the west coast of India experiences a slight decrease in wind speed. Serviceability responses, such as tower deflection, rotation, and nacelle acceleration, are expected to rise by 8–10 %. In contrast, a decrease in these responses is projected in the North Sea due to a decrease in future wind speed and wave height. Climate change has a greater impact on shutdown conditions than on normal operations, primarily due to the pronounced shifts in extreme climate conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Structures
Marine Structures 工程技术-工程:海洋
CiteScore
8.70
自引率
7.70%
发文量
157
审稿时长
6.4 months
期刊介绍: This journal aims to provide a medium for presentation and discussion of the latest developments in research, design, fabrication and in-service experience relating to marine structures, i.e., all structures of steel, concrete, light alloy or composite construction having an interface with the sea, including ships, fixed and mobile offshore platforms, submarine and submersibles, pipelines, subsea systems for shallow and deep ocean operations and coastal structures such as piers.
期刊最新文献
Multiple-arc cylinder under flow: Vortex-induced vibration and energy harvesting Analysis of tubular joints in marine structures: A comprehensive review A study on the mechanical behavior of umbilical cables under impact loads using experimental and numerical methods Numerical and experimental investigation on active hydraulic tensioner system for a TLP under tether fails condition Assessment of internal defects in flush ground butt welds in marine structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1