面向度量感知曲面高阶网格优化的全球化预条件牛顿- cg求解器

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-11-30 DOI:10.1016/j.cad.2023.103651
Guillermo Aparicio-Estrems, Abel Gargallo-Peiró, Xevi Roca
{"title":"面向度量感知曲面高阶网格优化的全球化预条件牛顿- cg求解器","authors":"Guillermo Aparicio-Estrems,&nbsp;Abel Gargallo-Peiró,&nbsp;Xevi Roca","doi":"10.1016/j.cad.2023.103651","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>We present a specific-purpose globalized and preconditioned Newton-CG solver to minimize a metric-aware curved high-order mesh distortion<span>. The solver is specially devised to optimize curved high-order meshes for high </span></span>polynomial degrees<span> with a target metric featuring non-uniform sizing, high stretching ratios, and curved alignment — exactly the features that stiffen the optimization problem. To this end, we consider two ingredients: a specific-purpose globalization and a specific-purpose Jacobi-</span></span><span><math><mrow><msup><mrow><mtext>iLDL</mtext></mrow><mrow><mtext>T</mtext></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span><span><span> preconditioning with varying accuracy and curvature tolerances (dynamic forcing terms) for the CG method. These improvements are critical in stiff problems because, without them, the large number of non-linear and linear iterations makes curved optimization impractical. First, to enhance the global convergence of the non-linear solver, the globalization strategy modifies Newton’s direction to a feasible step. In particular, our specific-purpose globalization strategy memorizes the length of the feasible step (step-length continuation) between the optimization iterations while ensuring sufficient decrease and progress. Second, to compute Newton’s direction in second-order optimization problems, we consider a conjugate-gradient iterative solver with specific-purpose preconditioning and dynamic </span>forcing terms<span>. To account for the metric stretching and alignment, the preconditioner uses specific orderings for the mesh nodes and the degrees of freedom. We also present a preconditioner switch between Jacobi and </span></span><span><math><mrow><msup><mrow><mtext>iLDL</mtext></mrow><mrow><mtext>T</mtext></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span><span><span> preconditioners to control the numerical ill-conditioning of the preconditioner. In addition, the dynamic forcing terms determine the required accuracy for the Newton direction </span>approximation<span>. Specifically, they control the residual tolerance and enforce sufficient positive curvature for the conjugate-gradients method. Finally, to analyze the performance of our method, the results compare the specific-purpose solver with standard optimization methods. For this, we measure the matrix–vector products indicating the solver computational cost and the line-search iterations indicating the total amount of objective function evaluations. When we combine the globalization and the linear solver ingredients, we conclude that the specific-purpose Newton-CG solver reduces the total number of matrix–vector products by one order of magnitude. Moreover, the number of non-linear and line-search iterations is mainly smaller but of similar magnitude.</span></span></p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Globalized and Preconditioned Newton-CG Solver for Metric-Aware Curved High-Order Mesh Optimization\",\"authors\":\"Guillermo Aparicio-Estrems,&nbsp;Abel Gargallo-Peiró,&nbsp;Xevi Roca\",\"doi\":\"10.1016/j.cad.2023.103651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>We present a specific-purpose globalized and preconditioned Newton-CG solver to minimize a metric-aware curved high-order mesh distortion<span>. The solver is specially devised to optimize curved high-order meshes for high </span></span>polynomial degrees<span> with a target metric featuring non-uniform sizing, high stretching ratios, and curved alignment — exactly the features that stiffen the optimization problem. To this end, we consider two ingredients: a specific-purpose globalization and a specific-purpose Jacobi-</span></span><span><math><mrow><msup><mrow><mtext>iLDL</mtext></mrow><mrow><mtext>T</mtext></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span><span><span> preconditioning with varying accuracy and curvature tolerances (dynamic forcing terms) for the CG method. These improvements are critical in stiff problems because, without them, the large number of non-linear and linear iterations makes curved optimization impractical. First, to enhance the global convergence of the non-linear solver, the globalization strategy modifies Newton’s direction to a feasible step. In particular, our specific-purpose globalization strategy memorizes the length of the feasible step (step-length continuation) between the optimization iterations while ensuring sufficient decrease and progress. Second, to compute Newton’s direction in second-order optimization problems, we consider a conjugate-gradient iterative solver with specific-purpose preconditioning and dynamic </span>forcing terms<span>. To account for the metric stretching and alignment, the preconditioner uses specific orderings for the mesh nodes and the degrees of freedom. We also present a preconditioner switch between Jacobi and </span></span><span><math><mrow><msup><mrow><mtext>iLDL</mtext></mrow><mrow><mtext>T</mtext></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span><span><span> preconditioners to control the numerical ill-conditioning of the preconditioner. In addition, the dynamic forcing terms determine the required accuracy for the Newton direction </span>approximation<span>. Specifically, they control the residual tolerance and enforce sufficient positive curvature for the conjugate-gradients method. Finally, to analyze the performance of our method, the results compare the specific-purpose solver with standard optimization methods. For this, we measure the matrix–vector products indicating the solver computational cost and the line-search iterations indicating the total amount of objective function evaluations. When we combine the globalization and the linear solver ingredients, we conclude that the specific-purpose Newton-CG solver reduces the total number of matrix–vector products by one order of magnitude. Moreover, the number of non-linear and line-search iterations is mainly smaller but of similar magnitude.</span></span></p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010448523001835\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448523001835","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个特定用途的全球化和预置牛顿- cg求解器,以最小化度量感知的曲面高阶网格畸变。该求解器是专门设计来优化高多项式度的曲面高阶网格,其目标度量具有非均匀尺寸,高拉伸比和弯曲对齐-正是这些特征使优化问题变得僵硬。为此,我们考虑了两个组成部分:特定目的全球化和特定目的Jacobi-iLDLT(0)预处理,具有不同的精度和曲率公差(动态强迫项)的CG方法。这些改进对于刚性问题至关重要,因为如果没有它们,大量的非线性和线性迭代将使曲线优化变得不切实际。首先,为了增强非线性求解器的全局收敛性,全球化策略将牛顿方向修正为可行的一步。特别是,我们的特定目的的全球化策略在确保充分减少和进步的同时,记住了优化迭代之间可行步骤的长度(步长延续)。其次,为了计算二阶优化问题中的牛顿方向,我们考虑了具有特定目的预处理和动态强迫项的共轭梯度迭代求解器。为了考虑度量拉伸和对齐,前置条件对网格节点和自由度使用特定的排序。我们还提出了在Jacobi和iLDLT(0)预条件之间的预条件切换,以控制预条件的数值病态。此外,动力强迫项决定了牛顿方向近似所需的精度。具体来说,它们控制了残余公差,并为共轭梯度法提供了足够的正曲率。最后,对本文方法的性能进行了分析,并将该方法与标准优化方法进行了比较。为此,我们测量指示求解器计算成本的矩阵向量积和指示目标函数评估总量的线搜索迭代。当我们结合全球化和线性求解器成分时,我们得出结论,特定用途的牛顿- cg求解器将矩阵-向量乘积的总数减少了一个数量级。此外,非线性和直线搜索迭代的次数主要是较小的,但大小相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Globalized and Preconditioned Newton-CG Solver for Metric-Aware Curved High-Order Mesh Optimization

We present a specific-purpose globalized and preconditioned Newton-CG solver to minimize a metric-aware curved high-order mesh distortion. The solver is specially devised to optimize curved high-order meshes for high polynomial degrees with a target metric featuring non-uniform sizing, high stretching ratios, and curved alignment — exactly the features that stiffen the optimization problem. To this end, we consider two ingredients: a specific-purpose globalization and a specific-purpose Jacobi-iLDLT(0) preconditioning with varying accuracy and curvature tolerances (dynamic forcing terms) for the CG method. These improvements are critical in stiff problems because, without them, the large number of non-linear and linear iterations makes curved optimization impractical. First, to enhance the global convergence of the non-linear solver, the globalization strategy modifies Newton’s direction to a feasible step. In particular, our specific-purpose globalization strategy memorizes the length of the feasible step (step-length continuation) between the optimization iterations while ensuring sufficient decrease and progress. Second, to compute Newton’s direction in second-order optimization problems, we consider a conjugate-gradient iterative solver with specific-purpose preconditioning and dynamic forcing terms. To account for the metric stretching and alignment, the preconditioner uses specific orderings for the mesh nodes and the degrees of freedom. We also present a preconditioner switch between Jacobi and iLDLT(0) preconditioners to control the numerical ill-conditioning of the preconditioner. In addition, the dynamic forcing terms determine the required accuracy for the Newton direction approximation. Specifically, they control the residual tolerance and enforce sufficient positive curvature for the conjugate-gradients method. Finally, to analyze the performance of our method, the results compare the specific-purpose solver with standard optimization methods. For this, we measure the matrix–vector products indicating the solver computational cost and the line-search iterations indicating the total amount of objective function evaluations. When we combine the globalization and the linear solver ingredients, we conclude that the specific-purpose Newton-CG solver reduces the total number of matrix–vector products by one order of magnitude. Moreover, the number of non-linear and line-search iterations is mainly smaller but of similar magnitude.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning. Evaluation of the potential of achachairu peel (Garcinia humilis) for the fortification of cereal-based foods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1