Wenxu Cui
(, ), Jinhui Jiang
(, ), Huiyu Sun
(, ), Hongji Yang
(, ), Xu Wang
(, ), Lihui Wang
(, ), Hongqiu Li
(, )
{"title":"参数不确定结构的数据驱动荷载识别方法","authors":"Wenxu Cui \n (, ), Jinhui Jiang \n (, ), Huiyu Sun \n (, ), Hongji Yang \n (, ), Xu Wang \n (, ), Lihui Wang \n (, ), Hongqiu Li \n (, )","doi":"10.1007/s10409-023-23138-x","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamic load identification plays a crucial role in structural design and optimization. The majority of current studies are focused on deterministic structures. However, the structural parameters of actual engineering structures are unknown. It is essential to investigate the issue of dynamic load identification for uncertain structures since the existence of uncertain parameters can lead to errors between load identification results and actual load values. Therefore, in this paper, we propose a data-driven dynamic load identification method for structures containing some uncertain parameters. To start, the uncertain parameters are characterized by a set of closed interval vectors. Then a convolutional neural network (CNN) is introduced for the reconstruction of the interval of unknown load. Combining the interval analysis theory with Taylor expansion, the upper and lower boundaries of the supervised loads are obtained and used as training samples. Finally, the trained CNN model directly identifies the boundaries of the unknown load interval. The simulation results demonstrate that the proposed method has great accuracy in load identification and has good robustness to noise. We construct a simply supported beam structure for experiments to further validate the feasibility of the proposed method in engineering. Additionally, we discuss the effect of measurement point distribution and number of samples on the identification accuracy, which is beneficial for applications in engineering practice.</p></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven load identification method of structures with uncertain parameters\",\"authors\":\"Wenxu Cui \\n (, ), Jinhui Jiang \\n (, ), Huiyu Sun \\n (, ), Hongji Yang \\n (, ), Xu Wang \\n (, ), Lihui Wang \\n (, ), Hongqiu Li \\n (, )\",\"doi\":\"10.1007/s10409-023-23138-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dynamic load identification plays a crucial role in structural design and optimization. The majority of current studies are focused on deterministic structures. However, the structural parameters of actual engineering structures are unknown. It is essential to investigate the issue of dynamic load identification for uncertain structures since the existence of uncertain parameters can lead to errors between load identification results and actual load values. Therefore, in this paper, we propose a data-driven dynamic load identification method for structures containing some uncertain parameters. To start, the uncertain parameters are characterized by a set of closed interval vectors. Then a convolutional neural network (CNN) is introduced for the reconstruction of the interval of unknown load. Combining the interval analysis theory with Taylor expansion, the upper and lower boundaries of the supervised loads are obtained and used as training samples. Finally, the trained CNN model directly identifies the boundaries of the unknown load interval. The simulation results demonstrate that the proposed method has great accuracy in load identification and has good robustness to noise. We construct a simply supported beam structure for experiments to further validate the feasibility of the proposed method in engineering. Additionally, we discuss the effect of measurement point distribution and number of samples on the identification accuracy, which is beneficial for applications in engineering practice.</p></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-023-23138-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-023-23138-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Data-driven load identification method of structures with uncertain parameters
Dynamic load identification plays a crucial role in structural design and optimization. The majority of current studies are focused on deterministic structures. However, the structural parameters of actual engineering structures are unknown. It is essential to investigate the issue of dynamic load identification for uncertain structures since the existence of uncertain parameters can lead to errors between load identification results and actual load values. Therefore, in this paper, we propose a data-driven dynamic load identification method for structures containing some uncertain parameters. To start, the uncertain parameters are characterized by a set of closed interval vectors. Then a convolutional neural network (CNN) is introduced for the reconstruction of the interval of unknown load. Combining the interval analysis theory with Taylor expansion, the upper and lower boundaries of the supervised loads are obtained and used as training samples. Finally, the trained CNN model directly identifies the boundaries of the unknown load interval. The simulation results demonstrate that the proposed method has great accuracy in load identification and has good robustness to noise. We construct a simply supported beam structure for experiments to further validate the feasibility of the proposed method in engineering. Additionally, we discuss the effect of measurement point distribution and number of samples on the identification accuracy, which is beneficial for applications in engineering practice.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics