Luo Xie
(, ), Xiao Cui
(, ), Boqi Jia
(, ), Qiang Li
(, ), Haibao Hu
(, )
{"title":"交变电场作用下粘性射流的电流体动力不稳定性","authors":"Luo Xie \n (, ), Xiao Cui \n (, ), Boqi Jia \n (, ), Qiang Li \n (, ), Haibao Hu \n (, )","doi":"10.1007/s10409-023-23230-x","DOIUrl":null,"url":null,"abstract":"<div><p>The instability and breakup of liquid jets under static or alternating electric fields are involved in numerous industrial applications. Unlike under electrostatic fields, far fewer investigations have been conducted to analyze the instability of liquid jets in alternating electric fields. Thus, the electric and viscous correction of viscous potential flow (EVCVPF) is applied here to describe the linear instability of leaky-dielectric liquid jets subjected to alternating electric fields. The effects of alternating electric fields, fluid electric properties, and other parameters are investigated. The capillary instability response is like that of the jets under electrostatic fields. Under a sufficiently strong alternating electric field, the resonance instability dominates surface disturbances, leading to the resonant atomization. Viscous damping makes the resonance weaker–even vanishing with the increasing frequency. Furthermore, the conductive charge–largely dependent on fluid conductivities–has the opposite effect of the surface charge. Thus, when the charge relaxation time approaches the imposed period, the parametric resonance is strongly inhibited. In addition, when aerodynamic effects are sufficiently strong, the resonance is covered.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrohydrodynamic instabilities of viscous jets under alternating electric fields\",\"authors\":\"Luo Xie \\n (, ), Xiao Cui \\n (, ), Boqi Jia \\n (, ), Qiang Li \\n (, ), Haibao Hu \\n (, )\",\"doi\":\"10.1007/s10409-023-23230-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The instability and breakup of liquid jets under static or alternating electric fields are involved in numerous industrial applications. Unlike under electrostatic fields, far fewer investigations have been conducted to analyze the instability of liquid jets in alternating electric fields. Thus, the electric and viscous correction of viscous potential flow (EVCVPF) is applied here to describe the linear instability of leaky-dielectric liquid jets subjected to alternating electric fields. The effects of alternating electric fields, fluid electric properties, and other parameters are investigated. The capillary instability response is like that of the jets under electrostatic fields. Under a sufficiently strong alternating electric field, the resonance instability dominates surface disturbances, leading to the resonant atomization. Viscous damping makes the resonance weaker–even vanishing with the increasing frequency. Furthermore, the conductive charge–largely dependent on fluid conductivities–has the opposite effect of the surface charge. Thus, when the charge relaxation time approaches the imposed period, the parametric resonance is strongly inhibited. In addition, when aerodynamic effects are sufficiently strong, the resonance is covered.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-023-23230-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-023-23230-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Electrohydrodynamic instabilities of viscous jets under alternating electric fields
The instability and breakup of liquid jets under static or alternating electric fields are involved in numerous industrial applications. Unlike under electrostatic fields, far fewer investigations have been conducted to analyze the instability of liquid jets in alternating electric fields. Thus, the electric and viscous correction of viscous potential flow (EVCVPF) is applied here to describe the linear instability of leaky-dielectric liquid jets subjected to alternating electric fields. The effects of alternating electric fields, fluid electric properties, and other parameters are investigated. The capillary instability response is like that of the jets under electrostatic fields. Under a sufficiently strong alternating electric field, the resonance instability dominates surface disturbances, leading to the resonant atomization. Viscous damping makes the resonance weaker–even vanishing with the increasing frequency. Furthermore, the conductive charge–largely dependent on fluid conductivities–has the opposite effect of the surface charge. Thus, when the charge relaxation time approaches the imposed period, the parametric resonance is strongly inhibited. In addition, when aerodynamic effects are sufficiently strong, the resonance is covered.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics