Krit Dwivedi, Michael Sharkey, Liam Delany, Samer Alabed, Smitha Rajaram, Catherine Hill, Christopher Johns, Alex Rothman, Roger Thompson, Robin Condliffe, David Kiely, Andrew Swift, Jim Wild
{"title":"结合深度学习和放射科医生的优势,改善肺动脉高压患者CT上肺部疾病的量化和预后:一项具有外部验证的回顾性多中心研究","authors":"Krit Dwivedi, Michael Sharkey, Liam Delany, Samer Alabed, Smitha Rajaram, Catherine Hill, Christopher Johns, Alex Rothman, Roger Thompson, Robin Condliffe, David Kiely, Andrew Swift, Jim Wild","doi":"10.1016/j.rcro.2023.100096","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":101248,"journal":{"name":"The Royal College of Radiologists Open","volume":"1 ","pages":"Article 100096"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773066223000967/pdfft?md5=584c479b2a7350173e0cb9cd5ef8d644&pid=1-s2.0-S2773066223000967-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Improved quantification and prognostication of lung disease on CT in pulmonary hypertension by combining the strengths of deep learning and radiologists: a retrospective multicentre study with external validation\",\"authors\":\"Krit Dwivedi, Michael Sharkey, Liam Delany, Samer Alabed, Smitha Rajaram, Catherine Hill, Christopher Johns, Alex Rothman, Roger Thompson, Robin Condliffe, David Kiely, Andrew Swift, Jim Wild\",\"doi\":\"10.1016/j.rcro.2023.100096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":101248,\"journal\":{\"name\":\"The Royal College of Radiologists Open\",\"volume\":\"1 \",\"pages\":\"Article 100096\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773066223000967/pdfft?md5=584c479b2a7350173e0cb9cd5ef8d644&pid=1-s2.0-S2773066223000967-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Royal College of Radiologists Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773066223000967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Royal College of Radiologists Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773066223000967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved quantification and prognostication of lung disease on CT in pulmonary hypertension by combining the strengths of deep learning and radiologists: a retrospective multicentre study with external validation