全动力学相图耦合多组分柱向等轴晶粒转变模型及其在增材制造中的应用

IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL Calphad-computer Coupling of Phase Diagrams and Thermochemistry Pub Date : 2023-12-03 DOI:10.1016/j.calphad.2023.102642
Qiang Du, Mohammed M'Hamdi, Magnus Reiersen, Even Wilberg Hovig, Kai Zhang
{"title":"全动力学相图耦合多组分柱向等轴晶粒转变模型及其在增材制造中的应用","authors":"Qiang Du,&nbsp;Mohammed M'Hamdi,&nbsp;Magnus Reiersen,&nbsp;Even Wilberg Hovig,&nbsp;Kai Zhang","doi":"10.1016/j.calphad.2023.102642","DOIUrl":null,"url":null,"abstract":"<div><p>The columnar-to-equiaxed transition (CET) is known to impact crack formation during the additive manufacturing of metallic alloys. While previous experiments have shown that CET is tunable via its alloying elements, a rigorous multicomponent model to demonstrate the impact of multi-alloying components on CET is still lacking. In this study, we developed a multicomponent model by fully coupling the phase diagram of the kinetic interface condition. Building upon the binary model reported by Gaumann et al. our model replaces the restrictive approach of calculating the non-equilibrium partition coefficient and liquidus slopes with kinetic phase diagram calculation. The extended multicomponent model was validated by comparing it with the Al–Cu results reported by Gaumann et al. CET transition curves were computed for two Al–Cu–Mg–Si–Zn alloys manufactured using laser powder bed fusion. The results are in qualitative agreement with our own and previously reported experimental results. These findings suggest that the proposed multicomponent CET model is a valuable tool for designing AM alloys and optimising processing parameters.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"84 ","pages":"Article 102642"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0364591623001141/pdfft?md5=b207c54fb41a847b1bf0294e9329d422&pid=1-s2.0-S0364591623001141-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A fully kinetic phase diagram-coupled multicomponent columnar-to-equiaxed grain transition model with an application to additive manufacturing\",\"authors\":\"Qiang Du,&nbsp;Mohammed M'Hamdi,&nbsp;Magnus Reiersen,&nbsp;Even Wilberg Hovig,&nbsp;Kai Zhang\",\"doi\":\"10.1016/j.calphad.2023.102642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The columnar-to-equiaxed transition (CET) is known to impact crack formation during the additive manufacturing of metallic alloys. While previous experiments have shown that CET is tunable via its alloying elements, a rigorous multicomponent model to demonstrate the impact of multi-alloying components on CET is still lacking. In this study, we developed a multicomponent model by fully coupling the phase diagram of the kinetic interface condition. Building upon the binary model reported by Gaumann et al. our model replaces the restrictive approach of calculating the non-equilibrium partition coefficient and liquidus slopes with kinetic phase diagram calculation. The extended multicomponent model was validated by comparing it with the Al–Cu results reported by Gaumann et al. CET transition curves were computed for two Al–Cu–Mg–Si–Zn alloys manufactured using laser powder bed fusion. The results are in qualitative agreement with our own and previously reported experimental results. These findings suggest that the proposed multicomponent CET model is a valuable tool for designing AM alloys and optimising processing parameters.</p></div>\",\"PeriodicalId\":9436,\"journal\":{\"name\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"volume\":\"84 \",\"pages\":\"Article 102642\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0364591623001141/pdfft?md5=b207c54fb41a847b1bf0294e9329d422&pid=1-s2.0-S0364591623001141-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0364591623001141\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591623001141","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在金属合金增材制造过程中,柱向等轴转变(CET)影响裂纹的形成。虽然之前的实验已经证明了电阻抗可通过合金元素进行调节,但目前还缺乏一个严格的多组分模型来证明多合金元素对电阻抗的影响。在本研究中,我们通过完全耦合动力学界面条件的相图建立了一个多组分模型。该模型以Gaumann等人的二元模型为基础,用动力学相图计算取代了计算非平衡分配系数和液相斜率的限制性方法。通过将扩展的多组分模型与Gaumann等人报道的al - cu结果进行比较,验证了扩展的多组分模型。计算了激光粉末床熔合制备的两种Al-Cu-Mg-Si-Zn合金的相变曲线。结果与我们自己和以前报道的实验结果在定性上一致。这些发现表明,所提出的多组分CET模型是设计增材制造合金和优化加工参数的有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fully kinetic phase diagram-coupled multicomponent columnar-to-equiaxed grain transition model with an application to additive manufacturing

The columnar-to-equiaxed transition (CET) is known to impact crack formation during the additive manufacturing of metallic alloys. While previous experiments have shown that CET is tunable via its alloying elements, a rigorous multicomponent model to demonstrate the impact of multi-alloying components on CET is still lacking. In this study, we developed a multicomponent model by fully coupling the phase diagram of the kinetic interface condition. Building upon the binary model reported by Gaumann et al. our model replaces the restrictive approach of calculating the non-equilibrium partition coefficient and liquidus slopes with kinetic phase diagram calculation. The extended multicomponent model was validated by comparing it with the Al–Cu results reported by Gaumann et al. CET transition curves were computed for two Al–Cu–Mg–Si–Zn alloys manufactured using laser powder bed fusion. The results are in qualitative agreement with our own and previously reported experimental results. These findings suggest that the proposed multicomponent CET model is a valuable tool for designing AM alloys and optimising processing parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
16.70%
发文量
94
审稿时长
2.5 months
期刊介绍: The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.
期刊最新文献
Thermodynamic properties of calcium antimonates from experiments and first principles Exploration of high-ductility ternary refractory complex concentrated alloys using first-principles calculations and machine learning Interdiffusivity matrices and atomic mobilities in fcc Ni–Fe–Mo alloys: Experiment and modeling The Al2O3-SiO2-“V2O3” phase diagram at 1873 K Experimental investigation and thermodynamic calculation of the Al-Cr-Pd ternary system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1